Grokking Deep Learning

Download Grokking Deep Learning PDF Online Free

Author :
Publisher : Simon and Schuster
ISBN 13 : 163835720X
Total Pages : 475 pages
Book Rating : 4.6/5 (383 download)

DOWNLOAD NOW!


Book Synopsis Grokking Deep Learning by : Andrew W. Trask

Download or read book Grokking Deep Learning written by Andrew W. Trask and published by Simon and Schuster. This book was released on 2019-01-23 with total page 475 pages. Available in PDF, EPUB and Kindle. Book excerpt: Summary Grokking Deep Learning teaches you to build deep learning neural networks from scratch! In his engaging style, seasoned deep learning expert Andrew Trask shows you the science under the hood, so you grok for yourself every detail of training neural networks. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the Technology Deep learning, a branch of artificial intelligence, teaches computers to learn by using neural networks, technology inspired by the human brain. Online text translation, self-driving cars, personalized product recommendations, and virtual voice assistants are just a few of the exciting modern advancements possible thanks to deep learning. About the Book Grokking Deep Learning teaches you to build deep learning neural networks from scratch! In his engaging style, seasoned deep learning expert Andrew Trask shows you the science under the hood, so you grok for yourself every detail of training neural networks. Using only Python and its math-supporting library, NumPy, you'll train your own neural networks to see and understand images, translate text into different languages, and even write like Shakespeare! When you're done, you'll be fully prepared to move on to mastering deep learning frameworks. What's inside The science behind deep learning Building and training your own neural networks Privacy concepts, including federated learning Tips for continuing your pursuit of deep learning About the Reader For readers with high school-level math and intermediate programming skills. About the Author Andrew Trask is a PhD student at Oxford University and a research scientist at DeepMind. Previously, Andrew was a researcher and analytics product manager at Digital Reasoning, where he trained the world's largest artificial neural network and helped guide the analytics roadmap for the Synthesys cognitive computing platform. Table of Contents Introducing deep learning: why you should learn it Fundamental concepts: how do machines learn? Introduction to neural prediction: forward propagation Introduction to neural learning: gradient descent Learning multiple weights at a time: generalizing gradient descent Building your first deep neural network: introduction to backpropagation How to picture neural networks: in your head and on paper Learning signal and ignoring noise:introduction to regularization and batching Modeling probabilities and nonlinearities: activation functions Neural learning about edges and corners: intro to convolutional neural networks Neural networks that understand language: king - man + woman == ? Neural networks that write like Shakespeare: recurrent layers for variable-length data Introducing automatic optimization: let's build a deep learning framework Learning to write like Shakespeare: long short-term memory Deep learning on unseen data: introducing federated learning Where to go from here: a brief guide

Google BigQuery: The Definitive Guide

Download Google BigQuery: The Definitive Guide PDF Online Free

Author :
Publisher : O'Reilly Media
ISBN 13 : 1492044431
Total Pages : 522 pages
Book Rating : 4.4/5 (92 download)

DOWNLOAD NOW!


Book Synopsis Google BigQuery: The Definitive Guide by : Valliappa Lakshmanan

Download or read book Google BigQuery: The Definitive Guide written by Valliappa Lakshmanan and published by O'Reilly Media. This book was released on 2019-10-23 with total page 522 pages. Available in PDF, EPUB and Kindle. Book excerpt: Work with petabyte-scale datasets while building a collaborative, agile workplace in the process. This practical book is the canonical reference to Google BigQuery, the query engine that lets you conduct interactive analysis of large datasets. BigQuery enables enterprises to efficiently store, query, ingest, and learn from their data in a convenient framework. With this book, you’ll examine how to analyze data at scale to derive insights from large datasets efficiently. Valliappa Lakshmanan, tech lead for Google Cloud Platform, and Jordan Tigani, engineering director for the BigQuery team, provide best practices for modern data warehousing within an autoscaled, serverless public cloud. Whether you want to explore parts of BigQuery you’re not familiar with or prefer to focus on specific tasks, this reference is indispensable.

Artificial Intelligence

Download Artificial Intelligence PDF Online Free

Author :
Publisher : Independently Published
ISBN 13 : 9781092879675
Total Pages : 214 pages
Book Rating : 4.8/5 (796 download)

DOWNLOAD NOW!


Book Synopsis Artificial Intelligence by : Neil Wilkins

Download or read book Artificial Intelligence written by Neil Wilkins and published by Independently Published. This book was released on 2019-04-06 with total page 214 pages. Available in PDF, EPUB and Kindle. Book excerpt: If you want to learn key AI concepts to get you quickly up to speed with all things AI, then keep reading Two manuscripts in one book: Artificial Intelligence: What You Need to Know About Machine Learning, Robotics, Deep Learning, Recommender Systems, Internet of Things, Neural Networks, Reinforcement Learning, and Our Future Internet of Things: What You Need to Know About IoT, Big Data, Predictive Analytics, Artificial Intelligence, Machine Learning, Cybersecurity, Business Intelligence, Augmented Reality and Our Future This book covers everything from machine learning to robotics and the internet of things. You can use it as a nifty guidebook whenever you come across news headlines that talk about some new advancement in AI by Google or Facebook. By the time you finish reading, you will be aware of what artificial neural networks are, how gradient descent and back propagation work, and what deep learning is. You will also learn a comprehensive history of AI, from the first invention of automations in antiquity to the driver-less cars of today. In part 1 of this book, you will: Understand how machines can "think" and how they learn Learn the five reasons why experts are warning us about AI research Find the answers to the top six myths of artificial intelligence Learn what neural networks are and how they work, the "brains" of machine learning Understand reinforcement learning and how it is used to teach machine learning systems through experience Become up-to-date with the current state-of-the-art artificial intelligence methods that use deep learning Learn the basics of recommender systems Expand your current view of machines and what is possible with modern robotics Enter the vast world of the internet of things technologies Find out why AI is the new business degree And much, much more! Some of the topics covered in part 2 of this book include: Origins of IoT IoT Security Ethical Hacking Internet of Things Under The Cushy Foot of Tech Giants The Power of Infinite Funds IoT Toys Bio-robotics Predictive Analytics Machine Learning Artificial Intelligence Cybersecurity Big Data Business Intelligence Augmented Reality Virtual Reality Our Future And much, much more If you want to learn more about the artificial intelligence and internet of things, then scroll up and click "add to cart"!

Fundamentals of Machine Learning for Predictive Data Analytics, second edition

Download Fundamentals of Machine Learning for Predictive Data Analytics, second edition PDF Online Free

Author :
Publisher : MIT Press
ISBN 13 : 0262361108
Total Pages : 853 pages
Book Rating : 4.2/5 (623 download)

DOWNLOAD NOW!


Book Synopsis Fundamentals of Machine Learning for Predictive Data Analytics, second edition by : John D. Kelleher

Download or read book Fundamentals of Machine Learning for Predictive Data Analytics, second edition written by John D. Kelleher and published by MIT Press. This book was released on 2020-10-20 with total page 853 pages. Available in PDF, EPUB and Kindle. Book excerpt: The second edition of a comprehensive introduction to machine learning approaches used in predictive data analytics, covering both theory and practice. Machine learning is often used to build predictive models by extracting patterns from large datasets. These models are used in predictive data analytics applications including price prediction, risk assessment, predicting customer behavior, and document classification. This introductory textbook offers a detailed and focused treatment of the most important machine learning approaches used in predictive data analytics, covering both theoretical concepts and practical applications. Technical and mathematical material is augmented with explanatory worked examples, and case studies illustrate the application of these models in the broader business context. This second edition covers recent developments in machine learning, especially in a new chapter on deep learning, and two new chapters that go beyond predictive analytics to cover unsupervised learning and reinforcement learning.

Building Machine Learning and Deep Learning Models on Google Cloud Platform

Download Building Machine Learning and Deep Learning Models on Google Cloud Platform PDF Online Free

Author :
Publisher : Apress
ISBN 13 : 1484244702
Total Pages : 703 pages
Book Rating : 4.4/5 (842 download)

DOWNLOAD NOW!


Book Synopsis Building Machine Learning and Deep Learning Models on Google Cloud Platform by : Ekaba Bisong

Download or read book Building Machine Learning and Deep Learning Models on Google Cloud Platform written by Ekaba Bisong and published by Apress. This book was released on 2019-09-27 with total page 703 pages. Available in PDF, EPUB and Kindle. Book excerpt: Take a systematic approach to understanding the fundamentals of machine learning and deep learning from the ground up and how they are applied in practice. You will use this comprehensive guide for building and deploying learning models to address complex use cases while leveraging the computational resources of Google Cloud Platform. Author Ekaba Bisong shows you how machine learning tools and techniques are used to predict or classify events based on a set of interactions between variables known as features or attributes in a particular dataset. He teaches you how deep learning extends the machine learning algorithm of neural networks to learn complex tasks that are difficult for computers to perform, such as recognizing faces and understanding languages. And you will know how to leverage cloud computing to accelerate data science and machine learning deployments. Building Machine Learning and Deep Learning Models on Google Cloud Platform is divided into eight parts that cover the fundamentals of machine learning and deep learning, the concept of data science and cloud services, programming for data science using the Python stack, Google Cloud Platform (GCP) infrastructure and products, advanced analytics on GCP, and deploying end-to-end machine learning solution pipelines on GCP. What You’ll Learn Understand the principles and fundamentals of machine learning and deep learning, the algorithms, how to use them, when to use them, and how to interpret your resultsKnow the programming concepts relevant to machine and deep learning design and development using the Python stack Build and interpret machine and deep learning models Use Google Cloud Platform tools and services to develop and deploy large-scale machine learning and deep learning products Be aware of the different facets and design choices to consider when modeling a learning problem Productionalize machine learning models into software products Who This Book Is For Beginners to the practice of data science and applied machine learning, data scientists at all levels, machine learning engineers, Google Cloud Platform data engineers/architects, and software developers

Deep Learning Illustrated

Download Deep Learning Illustrated PDF Online Free

Author :
Publisher : Addison-Wesley Professional
ISBN 13 : 0135121728
Total Pages : 725 pages
Book Rating : 4.1/5 (351 download)

DOWNLOAD NOW!


Book Synopsis Deep Learning Illustrated by : Jon Krohn

Download or read book Deep Learning Illustrated written by Jon Krohn and published by Addison-Wesley Professional. This book was released on 2019-08-05 with total page 725 pages. Available in PDF, EPUB and Kindle. Book excerpt: "The authors’ clear visual style provides a comprehensive look at what’s currently possible with artificial neural networks as well as a glimpse of the magic that’s to come." – Tim Urban, author of Wait But Why Fully Practical, Insightful Guide to Modern Deep Learning Deep learning is transforming software, facilitating powerful new artificial intelligence capabilities, and driving unprecedented algorithm performance. Deep Learning Illustrated is uniquely intuitive and offers a complete introduction to the discipline’s techniques. Packed with full-color figures and easy-to-follow code, it sweeps away the complexity of building deep learning models, making the subject approachable and fun to learn. World-class instructor and practitioner Jon Krohn–with visionary content from Grant Beyleveld and beautiful illustrations by Aglaé Bassens–presents straightforward analogies to explain what deep learning is, why it has become so popular, and how it relates to other machine learning approaches. Krohn has created a practical reference and tutorial for developers, data scientists, researchers, analysts, and students who want to start applying it. He illuminates theory with hands-on Python code in accompanying Jupyter notebooks. To help you progress quickly, he focuses on the versatile deep learning library Keras to nimbly construct efficient TensorFlow models; PyTorch, the leading alternative library, is also covered. You’ll gain a pragmatic understanding of all major deep learning approaches and their uses in applications ranging from machine vision and natural language processing to image generation and game-playing algorithms. Discover what makes deep learning systems unique, and the implications for practitioners Explore new tools that make deep learning models easier to build, use, and improve Master essential theory: artificial neurons, training, optimization, convolutional nets, recurrent nets, generative adversarial networks (GANs), deep reinforcement learning, and more Walk through building interactive deep learning applications, and move forward with your own artificial intelligence projects Register your book for convenient access to downloads, updates, and/or corrections as they become available. See inside book for details.

Statistics, Data Mining, and Machine Learning in Astronomy

Download Statistics, Data Mining, and Machine Learning in Astronomy PDF Online Free

Author :
Publisher : Princeton University Press
ISBN 13 : 0691151687
Total Pages : 550 pages
Book Rating : 4.6/5 (911 download)

DOWNLOAD NOW!


Book Synopsis Statistics, Data Mining, and Machine Learning in Astronomy by : Željko Ivezić

Download or read book Statistics, Data Mining, and Machine Learning in Astronomy written by Željko Ivezić and published by Princeton University Press. This book was released on 2014-01-12 with total page 550 pages. Available in PDF, EPUB and Kindle. Book excerpt: As telescopes, detectors, and computers grow ever more powerful, the volume of data at the disposal of astronomers and astrophysicists will enter the petabyte domain, providing accurate measurements for billions of celestial objects. This book provides a comprehensive and accessible introduction to the cutting-edge statistical methods needed to efficiently analyze complex data sets from astronomical surveys such as the Panoramic Survey Telescope and Rapid Response System, the Dark Energy Survey, and the upcoming Large Synoptic Survey Telescope. It serves as a practical handbook for graduate students and advanced undergraduates in physics and astronomy, and as an indispensable reference for researchers. Statistics, Data Mining, and Machine Learning in Astronomy presents a wealth of practical analysis problems, evaluates techniques for solving them, and explains how to use various approaches for different types and sizes of data sets. For all applications described in the book, Python code and example data sets are provided. The supporting data sets have been carefully selected from contemporary astronomical surveys (for example, the Sloan Digital Sky Survey) and are easy to download and use. The accompanying Python code is publicly available, well documented, and follows uniform coding standards. Together, the data sets and code enable readers to reproduce all the figures and examples, evaluate the methods, and adapt them to their own fields of interest. Describes the most useful statistical and data-mining methods for extracting knowledge from huge and complex astronomical data sets Features real-world data sets from contemporary astronomical surveys Uses a freely available Python codebase throughout Ideal for students and working astronomers

Python Machine Learning for Beginners

Download Python Machine Learning for Beginners PDF Online Free

Author :
Publisher :
ISBN 13 : 9781097858309
Total Pages : 236 pages
Book Rating : 4.8/5 (583 download)

DOWNLOAD NOW!


Book Synopsis Python Machine Learning for Beginners by : Leonard Deep

Download or read book Python Machine Learning for Beginners written by Leonard Deep and published by . This book was released on 2019-05-13 with total page 236 pages. Available in PDF, EPUB and Kindle. Book excerpt: Are you interested to get into the programming world? Do you want to learn and understand Python and Machine Learning? Python Machine Learning for Beginners is the guide for you. Python Machine Learning for Beginners is the ultimate guide for beginners looking to learn and understand how Python programming works. Python Machine Learning for Beginners is split up into easy to learn chapters that will help guide the readers through the early stages of Python programming. It's this thought out and systematic approach to learning which makes Python Machine Learning for Beginners such a sought-after resource for those that want to learn about Python programming and about Machine Learning using an object-oriented programming approach. Inside Python Machine Learning for Beginners you will discover: An introduction to Machine Learning The main concepts of Machine Learning The basics of Python for beginners Machine Learning with Python Data Processing, Analysis, and Visualizations Case studies and much more! Throughout the book, you will learn the basic concepts behind Python programming which is designed to introduce you to Python programming. You will learn about getting started, the keywords and statements, data types and type conversion. Along with different examples, there are also exercises to help ensure that the information sinks in. You will find this book an invaluable tool for starting and mastering Machine Learning using Python. Once you complete Python Machine Learning for Beginners, you will be more than prepared to take on any Python programming. Scroll back up to the top of this page and hit BUY IT NOW to get your copy of Python Machine Learning for Beginners! You won't regret it!

A First Course in Machine Learning

Download A First Course in Machine Learning PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1498738540
Total Pages : 428 pages
Book Rating : 4.4/5 (987 download)

DOWNLOAD NOW!


Book Synopsis A First Course in Machine Learning by : Simon Rogers

Download or read book A First Course in Machine Learning written by Simon Rogers and published by CRC Press. This book was released on 2016-10-14 with total page 428 pages. Available in PDF, EPUB and Kindle. Book excerpt: Introduces the main algorithms and ideas that underpin machine learning techniques and applications Keeps mathematical prerequisites to a minimum, providing mathematical explanations in comment boxes and highlighting important equations Covers modern machine learning research and techniques Includes three new chapters on Markov Chain Monte Carlo techniques, Classification and Regression with Gaussian Processes, and Dirichlet Process models Offers Python, R, and MATLAB code on accompanying website: http://www.dcs.gla.ac.uk/~srogers/firstcourseml/"

Interpretable Machine Learning

Download Interpretable Machine Learning PDF Online Free

Author :
Publisher : Lulu.com
ISBN 13 : 0244768528
Total Pages : 320 pages
Book Rating : 4.2/5 (447 download)

DOWNLOAD NOW!


Book Synopsis Interpretable Machine Learning by : Christoph Molnar

Download or read book Interpretable Machine Learning written by Christoph Molnar and published by Lulu.com. This book was released on 2020 with total page 320 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is about making machine learning models and their decisions interpretable. After exploring the concepts of interpretability, you will learn about simple, interpretable models such as decision trees, decision rules and linear regression. Later chapters focus on general model-agnostic methods for interpreting black box models like feature importance and accumulated local effects and explaining individual predictions with Shapley values and LIME. All interpretation methods are explained in depth and discussed critically. How do they work under the hood? What are their strengths and weaknesses? How can their outputs be interpreted? This book will enable you to select and correctly apply the interpretation method that is most suitable for your machine learning project.

Deep Learning

Download Deep Learning PDF Online Free

Author :
Publisher : MIT Press
ISBN 13 : 0262337371
Total Pages : 801 pages
Book Rating : 4.2/5 (623 download)

DOWNLOAD NOW!


Book Synopsis Deep Learning by : Ian Goodfellow

Download or read book Deep Learning written by Ian Goodfellow and published by MIT Press. This book was released on 2016-11-10 with total page 801 pages. Available in PDF, EPUB and Kindle. Book excerpt: An introduction to a broad range of topics in deep learning, covering mathematical and conceptual background, deep learning techniques used in industry, and research perspectives. “Written by three experts in the field, Deep Learning is the only comprehensive book on the subject.” —Elon Musk, cochair of OpenAI; cofounder and CEO of Tesla and SpaceX Deep learning is a form of machine learning that enables computers to learn from experience and understand the world in terms of a hierarchy of concepts. Because the computer gathers knowledge from experience, there is no need for a human computer operator to formally specify all the knowledge that the computer needs. The hierarchy of concepts allows the computer to learn complicated concepts by building them out of simpler ones; a graph of these hierarchies would be many layers deep. This book introduces a broad range of topics in deep learning. The text offers mathematical and conceptual background, covering relevant concepts in linear algebra, probability theory and information theory, numerical computation, and machine learning. It describes deep learning techniques used by practitioners in industry, including deep feedforward networks, regularization, optimization algorithms, convolutional networks, sequence modeling, and practical methodology; and it surveys such applications as natural language processing, speech recognition, computer vision, online recommendation systems, bioinformatics, and videogames. Finally, the book offers research perspectives, covering such theoretical topics as linear factor models, autoencoders, representation learning, structured probabilistic models, Monte Carlo methods, the partition function, approximate inference, and deep generative models. Deep Learning can be used by undergraduate or graduate students planning careers in either industry or research, and by software engineers who want to begin using deep learning in their products or platforms. A website offers supplementary material for both readers and instructors.

Data Science and Machine Learning

Download Data Science and Machine Learning PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1000730778
Total Pages : 538 pages
Book Rating : 4.0/5 (7 download)

DOWNLOAD NOW!


Book Synopsis Data Science and Machine Learning by : Dirk P. Kroese

Download or read book Data Science and Machine Learning written by Dirk P. Kroese and published by CRC Press. This book was released on 2019-11-20 with total page 538 pages. Available in PDF, EPUB and Kindle. Book excerpt: Focuses on mathematical understanding Presentation is self-contained, accessible, and comprehensive Full color throughout Extensive list of exercises and worked-out examples Many concrete algorithms with actual code

Data Science

Download Data Science PDF Online Free

Author :
Publisher :
ISBN 13 : 9781647483043
Total Pages : 134 pages
Book Rating : 4.4/5 (83 download)

DOWNLOAD NOW!


Book Synopsis Data Science by : Herbert Jones

Download or read book Data Science written by Herbert Jones and published by . This book was released on 2020-01-03 with total page 134 pages. Available in PDF, EPUB and Kindle. Book excerpt: 2 comprehensive manuscripts in 1 book Data Science: What the Best Data Scientists Know About Data Analytics, Data Mining, Statistics, Machine Learning, and Big Data - That You Don't Data Science for Business: Predictive Modeling, Data Mining, Data Analytics, Data Warehousing, Data Visualization, Regression Analysis, Database Querying

Artificial Intelligence and Machine Learning for Business

Download Artificial Intelligence and Machine Learning for Business PDF Online Free

Author :
Publisher : Relativistic
ISBN 13 : 9781999730345
Total Pages : 194 pages
Book Rating : 4.7/5 (33 download)

DOWNLOAD NOW!


Book Synopsis Artificial Intelligence and Machine Learning for Business by : Steven Finlay

Download or read book Artificial Intelligence and Machine Learning for Business written by Steven Finlay and published by Relativistic. This book was released on 2018-07 with total page 194 pages. Available in PDF, EPUB and Kindle. Book excerpt: Artificial Intelligence (AI) and Machine Learning are now mainstream business tools. They are being applied across many industries to increase profits, reduce costs, save lives and improve customer experiences. Organizations which understand these tools and know how to use them are benefiting at the expense of their rivals. Artificial Intelligence and Machine Learning for Business cuts through the hype and technical jargon that is often associated with these subjects. It delivers a simple and concise introduction for managers and business people. The focus is very much on practical application and how to work with technical specialists (data scientists) to maximize the benefits of these technologies. This third edition has been substantially revised and updated. It contains several new chapters and covers a broader set of topics than before, but retains the no-nonsense style of the original.

The Hundred-page Machine Learning Book

Download The Hundred-page Machine Learning Book PDF Online Free

Author :
Publisher :
ISBN 13 : 9781999579500
Total Pages : 141 pages
Book Rating : 4.5/5 (795 download)

DOWNLOAD NOW!


Book Synopsis The Hundred-page Machine Learning Book by : Andriy Burkov

Download or read book The Hundred-page Machine Learning Book written by Andriy Burkov and published by . This book was released on 2019 with total page 141 pages. Available in PDF, EPUB and Kindle. Book excerpt: Provides a practical guide to get started and execute on machine learning within a few days without necessarily knowing much about machine learning.The first five chapters are enough to get you started and the next few chapters provide you a good feel of more advanced topics to pursue.

Research Methods in Library and Information Science

Download Research Methods in Library and Information Science PDF Online Free

Author :
Publisher : Bloomsbury Publishing USA
ISBN 13 :
Total Pages : 351 pages
Book Rating : 4.2/5 (161 download)

DOWNLOAD NOW!


Book Synopsis Research Methods in Library and Information Science by : Lynn Silipigni Connaway

Download or read book Research Methods in Library and Information Science written by Lynn Silipigni Connaway and published by Bloomsbury Publishing USA. This book was released on 2021-05-24 with total page 351 pages. Available in PDF, EPUB and Kindle. Book excerpt: The seventh edition of this frequently adopted textbook features new or expanded sections on social justice research, data analysis software, scholarly identity research, social networking, data science, and data visualization, among other topics. It continues to include discipline experts' voices. The revised seventh edition of this popular text provides instruction and guidance for professionals and students in library and information science who want to conduct research and publish findings, as well as for practicing professionals who want a broad overview of the current literature. Providing a broad introduction to research design, the authors include principles, data collection techniques, and analyses of quantitative and qualitative methods, as well as advantages and limitations of each method and updated bibliographies. Chapters cover the scientific method, sampling, validity, reliability, and ethical concerns along with quantitative and qualitative methods. LIS students and professionals will consult this text not only for instruction on conducting research but also for guidance in critically reading and evaluating research publications, proposals, and reports. As in the previous edition, discipline experts provide advice, tips, and strategies for completing research projects, dissertations, and theses; writing grants; overcoming writer's block; collaborating with colleagues; and working with outside consultants. Journal and book editors discuss how to publish and identify best practices and understudied topics, as well as what they look for in submissions.

Machine Learning Algorithms and Concepts

Download Machine Learning Algorithms and Concepts PDF Online Free

Author :
Publisher : Notion Press
ISBN 13 :
Total Pages : 220 pages
Book Rating : 4.8/5 (96 download)

DOWNLOAD NOW!


Book Synopsis Machine Learning Algorithms and Concepts by : Sariya Ansari

Download or read book Machine Learning Algorithms and Concepts written by Sariya Ansari and published by Notion Press. This book was released on 2023-09-13 with total page 220 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is for machine learning professional & aspiring data scientist who wanted to be established themselves as a machine learning engineer or data science professional. Machine Learning Algorithms & Concepts gives complete idea to begin the phase of machine learning professional. This can be referred as a great starting point to switch the career path from existing profession to a machine learning professional. The book covers all major algorithms, its concept, usage, and other miscellaneous concepts based on situation which helps to its reader to decide in which situation what to be used. This book serves as guide to prepare for interviews, exams, campus work as well as for industry professional. It also covers basic programming which gives fair idea to its reader to learn how to code for machine learning problem statement even if he is a beginner in coding.