An Introduction To The Geometrical Analysis Of Vector Fields: With Applications To Maximum Principles And Lie Groups

Download An Introduction To The Geometrical Analysis Of Vector Fields: With Applications To Maximum Principles And Lie Groups PDF Online Free

Author :
Publisher : World Scientific
ISBN 13 : 9813276630
Total Pages : 450 pages
Book Rating : 4.8/5 (132 download)

DOWNLOAD NOW!


Book Synopsis An Introduction To The Geometrical Analysis Of Vector Fields: With Applications To Maximum Principles And Lie Groups by : Stefano Biagi

Download or read book An Introduction To The Geometrical Analysis Of Vector Fields: With Applications To Maximum Principles And Lie Groups written by Stefano Biagi and published by World Scientific. This book was released on 2018-12-05 with total page 450 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides the reader with a gentle path through the multifaceted theory of vector fields, starting from the definitions and the basic properties of vector fields and flows, and ending with some of their countless applications, in the framework of what is nowadays called Geometrical Analysis. Once the background material is established, the applications mainly deal with the following meaningful settings:

An Introduction to the Geometrical Analysis of Vector Fields

Download An Introduction to the Geometrical Analysis of Vector Fields PDF Online Free

Author :
Publisher :
ISBN 13 : 9789811221248
Total Pages : 452 pages
Book Rating : 4.2/5 (212 download)

DOWNLOAD NOW!


Book Synopsis An Introduction to the Geometrical Analysis of Vector Fields by : STEFANO. BONFIGLIOLI BIAGI (ANDREA.)

Download or read book An Introduction to the Geometrical Analysis of Vector Fields written by STEFANO. BONFIGLIOLI BIAGI (ANDREA.) and published by . This book was released on 2019-01-14 with total page 452 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides the reader with a gentle path through the multifaceted theory of vector fields, starting from the definitions and the basic properties of vector fields and flows, and ending with some of their countless applications, in the framework of what is nowadays called Geometrical Analysis. Once the background material is established, the applications mainly deal with the following meaningful settings: ODE theory; Maximum Principles (weak, strong and propagation principles); Lie groups (with an emphasis on the construction of Lie groups). This book also provides an introduction to the basic theory of Geometrical Analysis, with a new foundational presentation based on Ordinary Differential Equation techniques, in a unitary and self-contained way.

An Introduction to the Geometrical Analysis of Vector Fields

Download An Introduction to the Geometrical Analysis of Vector Fields PDF Online Free

Author :
Publisher :
ISBN 13 : 9789813276628
Total Pages : 423 pages
Book Rating : 4.2/5 (766 download)

DOWNLOAD NOW!


Book Synopsis An Introduction to the Geometrical Analysis of Vector Fields by : Stefano Biagi

Download or read book An Introduction to the Geometrical Analysis of Vector Fields written by Stefano Biagi and published by . This book was released on 2018 with total page 423 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides the reader with a gentle path through the multifaceted theory of vector fields, starting from the definitions and the basic properties of vector fields and flows, and ending with some of their countless applications, in the framework of what is nowadays called Geometrical Analysis. Once the background material is established, the applications mainly deal with the following meaningful settings:

Curvature of Space and Time, with an Introduction to Geometric Analysis

Download Curvature of Space and Time, with an Introduction to Geometric Analysis PDF Online Free

Author :
Publisher : American Mathematical Soc.
ISBN 13 : 1470456281
Total Pages : 243 pages
Book Rating : 4.4/5 (74 download)

DOWNLOAD NOW!


Book Synopsis Curvature of Space and Time, with an Introduction to Geometric Analysis by : Iva Stavrov

Download or read book Curvature of Space and Time, with an Introduction to Geometric Analysis written by Iva Stavrov and published by American Mathematical Soc.. This book was released on 2020-11-12 with total page 243 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book introduces advanced undergraduates to Riemannian geometry and mathematical general relativity. The overall strategy of the book is to explain the concept of curvature via the Jacobi equation which, through discussion of tidal forces, further helps motivate the Einstein field equations. After addressing concepts in geometry such as metrics, covariant differentiation, tensor calculus and curvature, the book explains the mathematical framework for both special and general relativity. Relativistic concepts discussed include (initial value formulation of) the Einstein equations, stress-energy tensor, Schwarzschild space-time, ADM mass and geodesic incompleteness. The concluding chapters of the book introduce the reader to geometric analysis: original results of the author and her undergraduate student collaborators illustrate how methods of analysis and differential equations are used in addressing questions from geometry and relativity. The book is mostly self-contained and the reader is only expected to have a solid foundation in multivariable and vector calculus and linear algebra. The material in this book was first developed for the 2013 summer program in geometric analysis at the Park City Math Institute, and was recently modified and expanded to reflect the author's experience of teaching mathematical general relativity to advanced undergraduates at Lewis & Clark College.

Visual Complex Analysis

Download Visual Complex Analysis PDF Online Free

Author :
Publisher : Oxford University Press
ISBN 13 : 9780198534464
Total Pages : 620 pages
Book Rating : 4.5/5 (344 download)

DOWNLOAD NOW!


Book Synopsis Visual Complex Analysis by : Tristan Needham

Download or read book Visual Complex Analysis written by Tristan Needham and published by Oxford University Press. This book was released on 1997 with total page 620 pages. Available in PDF, EPUB and Kindle. Book excerpt: This radical first course on complex analysis brings a beautiful and powerful subject to life by consistently using geometry (not calculation) as the means of explanation. Aimed at undergraduate students in mathematics, physics, and engineering, the book's intuitive explanations, lack of advanced prerequisites, and consciously user-friendly prose style will help students to master the subject more readily than was previously possible. The key to this is the book's use of new geometric arguments in place of the standard calculational ones. These geometric arguments are communicated with the aid of hundreds of diagrams of a standard seldom encountered in mathematical works. A new approach to a classical topic, this work will be of interest to students in mathematics, physics, and engineering, as well as to professionals in these fields.

Bifurcations of Planar Vector Fields

Download Bifurcations of Planar Vector Fields PDF Online Free

Author :
Publisher :
ISBN 13 : 9783662191552
Total Pages : 240 pages
Book Rating : 4.1/5 (915 download)

DOWNLOAD NOW!


Book Synopsis Bifurcations of Planar Vector Fields by : Freddy Dumortier

Download or read book Bifurcations of Planar Vector Fields written by Freddy Dumortier and published by . This book was released on 2014-01-15 with total page 240 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Vector Analysis

Download Vector Analysis PDF Online Free

Author :
Publisher : CUP Archive
ISBN 13 : 9780521211581
Total Pages : 276 pages
Book Rating : 4.2/5 (115 download)

DOWNLOAD NOW!


Book Synopsis Vector Analysis by : N. Kemmer

Download or read book Vector Analysis written by N. Kemmer and published by CUP Archive. This book was released on 1977-01-20 with total page 276 pages. Available in PDF, EPUB and Kindle. Book excerpt: Vector analysis provides the language that is needed for a precise quantitative statement of the general laws and relationships governing such branches of physics as electromagnetism and fluid dynamics. The account of the subject is aimed principally at physicists but the presentation is equally appropriate for engineers. The justification for adding to the available textbooks on vector analysis stems from Professor Kemmer's novel presentation of the subject developed through many years of teaching, and in relating the mathematics to physical models. While maintaining mathematical precision, the methodology of presentation relies greatly on the visual, geometric aspects of the subject and is supported throughout the text by many beautiful illustrations that are more than just schematic. A unification of the whole body of results developed in the book - from the simple ideas of differentiation and integration of vector fields to the theory of orthogonal curvilinear coordinates and to the treatment of time-dependent integrals over fields - is achieved by the introduction from the outset of a method of general parametrisation of curves and surfaces.

Topics in Noncommutative Algebra

Download Topics in Noncommutative Algebra PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3642225977
Total Pages : 554 pages
Book Rating : 4.6/5 (422 download)

DOWNLOAD NOW!


Book Synopsis Topics in Noncommutative Algebra by : Andrea Bonfiglioli

Download or read book Topics in Noncommutative Algebra written by Andrea Bonfiglioli and published by Springer. This book was released on 2011-10-11 with total page 554 pages. Available in PDF, EPUB and Kindle. Book excerpt: Motivated by the importance of the Campbell, Baker, Hausdorff, Dynkin Theorem in many different branches of Mathematics and Physics (Lie group-Lie algebra theory, linear PDEs, Quantum and Statistical Mechanics, Numerical Analysis, Theoretical Physics, Control Theory, sub-Riemannian Geometry), this monograph is intended to: fully enable readers (graduates or specialists, mathematicians, physicists or applied scientists, acquainted with Algebra or not) to understand and apply the statements and numerous corollaries of the main result, provide a wide spectrum of proofs from the modern literature, comparing different techniques and furnishing a unifying point of view and notation, provide a thorough historical background of the results, together with unknown facts about the effective early contributions by Schur, Poincaré, Pascal, Campbell, Baker, Hausdorff and Dynkin, give an outlook on the applications, especially in Differential Geometry (Lie group theory) and Analysis (PDEs of subelliptic type) and quickly enable the reader, through a description of the state-of-art and open problems, to understand the modern literature concerning a theorem which, though having its roots in the beginning of the 20th century, has not ceased to provide new problems and applications. The book assumes some undergraduate-level knowledge of algebra and analysis, but apart from that is self-contained. Part II of the monograph is devoted to the proofs of the algebraic background. The monograph may therefore provide a tool for beginners in Algebra.

Geometric Control Theory

Download Geometric Control Theory PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 0521495024
Total Pages : 516 pages
Book Rating : 4.5/5 (214 download)

DOWNLOAD NOW!


Book Synopsis Geometric Control Theory by : Velimir Jurdjevic

Download or read book Geometric Control Theory written by Velimir Jurdjevic and published by Cambridge University Press. This book was released on 1997 with total page 516 pages. Available in PDF, EPUB and Kindle. Book excerpt: Geometric control theory is concerned with the evolution of systems subject to physical laws but having some degree of freedom through which motion is to be controlled. This book describes the mathematical theory inspired by the irreversible nature of time evolving events. The first part of the book deals with the issue of being able to steer the system from any point of departure to any desired destination. The second part deals with optimal control, the question of finding the best possible course. An overlap with mathematical physics is demonstrated by the Maximum principle, a fundamental principle of optimality arising from geometric control, which is applied to time-evolving systems governed by physics as well as to man-made systems governed by controls. Applications are drawn from geometry, mechanics, and control of dynamical systems. The geometric language in which the results are expressed allows clear visual interpretations and makes the book accessible to physicists and engineers as well as to mathematicians.

Geometric Multivector Analysis

Download Geometric Multivector Analysis PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3030314111
Total Pages : 471 pages
Book Rating : 4.0/5 (33 download)

DOWNLOAD NOW!


Book Synopsis Geometric Multivector Analysis by : Andreas Rosén

Download or read book Geometric Multivector Analysis written by Andreas Rosén and published by Springer Nature. This book was released on 2019-11-09 with total page 471 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents a step-by-step guide to the basic theory of multivectors and spinors, with a focus on conveying to the reader the geometric understanding of these abstract objects. Following in the footsteps of M. Riesz and L. Ahlfors, the book also explains how Clifford algebra offers the ideal tool for studying spacetime isometries and Möbius maps in arbitrary dimensions. The book carefully develops the basic calculus of multivector fields and differential forms, and highlights novelties in the treatment of, e.g., pullbacks and Stokes’s theorem as compared to standard literature. It touches on recent research areas in analysis and explains how the function spaces of multivector fields are split into complementary subspaces by the natural first-order differential operators, e.g., Hodge splittings and Hardy splittings. Much of the analysis is done on bounded domains in Euclidean space, with a focus on analysis at the boundary. The book also includes a derivation of new Dirac integral equations for solving Maxwell scattering problems, which hold promise for future numerical applications. The last section presents down-to-earth proofs of index theorems for Dirac operators on compact manifolds, one of the most celebrated achievements of 20th-century mathematics. The book is primarily intended for graduate and PhD students of mathematics. It is also recommended for more advanced undergraduate students, as well as researchers in mathematics interested in an introduction to geometric analysis.

Geometric Theory of Dynamical Systems

Download Geometric Theory of Dynamical Systems PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1461257034
Total Pages : 208 pages
Book Rating : 4.4/5 (612 download)

DOWNLOAD NOW!


Book Synopsis Geometric Theory of Dynamical Systems by : J. Jr. Palis

Download or read book Geometric Theory of Dynamical Systems written by J. Jr. Palis and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 208 pages. Available in PDF, EPUB and Kindle. Book excerpt: ... cette etude qualitative (des equations difj'erentielles) aura par elle-m me un inter t du premier ordre ... HENRI POINCARE, 1881. We present in this book a view of the Geometric Theory of Dynamical Systems, which is introductory and yet gives the reader an understanding of some of the basic ideas involved in two important topics: structural stability and genericity. This theory has been considered by many mathematicians starting with Poincare, Liapunov and Birkhoff. In recent years some of its general aims were established and it experienced considerable development. More than two decades passed between two important events: the work of Andronov and Pontryagin (1937) introducing the basic concept of structural stability and the articles of Peixoto (1958-1962) proving the density of stable vector fields on surfaces. It was then that Smale enriched the theory substantially by defining as a main objective the search for generic and stable properties and by obtaining results and proposing problems of great relevance in this context. In this same period Hartman and Grobman showed that local stability is a generic property. Soon after this Kupka and Smale successfully attacked the problem for periodic orbits. We intend to give the reader the flavour of this theory by means of many examples and by the systematic proof of the Hartman-Grobman and the Stable Manifold Theorems (Chapter 2), the Kupka-Smale Theorem (Chapter 3) and Peixoto's Theorem (Chapter 4). Several ofthe proofs we give vii Introduction Vlll are simpler than the original ones and are open to important generalizations.

Rings, Fields, and Vector Spaces

Download Rings, Fields, and Vector Spaces PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 0387948481
Total Pages : 210 pages
Book Rating : 4.3/5 (879 download)

DOWNLOAD NOW!


Book Synopsis Rings, Fields, and Vector Spaces by : Bharath Sethuraman

Download or read book Rings, Fields, and Vector Spaces written by Bharath Sethuraman and published by Springer Science & Business Media. This book was released on 1996-11-26 with total page 210 pages. Available in PDF, EPUB and Kindle. Book excerpt: Using the proof of the non-trisectability of an arbitrary angle as a final goal, the author develops in an easy conversational style the basics of rings, fields, and vector spaces. Originally developed as a text for an introduction to algebra course for future high-school teachers at California State University, Northridge, the focus of this book is on exposition. It would serve extremely well as a focused, one-semester introduction to abstract algebra.

An Introduction to Riemannian Geometry

Download An Introduction to Riemannian Geometry PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3319086669
Total Pages : 476 pages
Book Rating : 4.3/5 (19 download)

DOWNLOAD NOW!


Book Synopsis An Introduction to Riemannian Geometry by : Leonor Godinho

Download or read book An Introduction to Riemannian Geometry written by Leonor Godinho and published by Springer. This book was released on 2014-07-26 with total page 476 pages. Available in PDF, EPUB and Kindle. Book excerpt: Unlike many other texts on differential geometry, this textbook also offers interesting applications to geometric mechanics and general relativity. The first part is a concise and self-contained introduction to the basics of manifolds, differential forms, metrics and curvature. The second part studies applications to mechanics and relativity including the proofs of the Hawking and Penrose singularity theorems. It can be independently used for one-semester courses in either of these subjects. The main ideas are illustrated and further developed by numerous examples and over 300 exercises. Detailed solutions are provided for many of these exercises, making An Introduction to Riemannian Geometry ideal for self-study.

Geometrical Vectors

Download Geometrical Vectors PDF Online Free

Author :
Publisher : University of Chicago Press
ISBN 13 : 9780226890487
Total Pages : 132 pages
Book Rating : 4.8/5 (94 download)

DOWNLOAD NOW!


Book Synopsis Geometrical Vectors by : Gabriel Weinreich

Download or read book Geometrical Vectors written by Gabriel Weinreich and published by University of Chicago Press. This book was released on 1998-07-06 with total page 132 pages. Available in PDF, EPUB and Kindle. Book excerpt: Every advanced undergraduate and graduate student of physics must master the concepts of vectors and vector analysis. Yet most books cover this topic by merely repeating the introductory-level treatment based on a limited algebraic or analytic view of the subject. Geometrical Vectors introduces a more sophisticated approach, which not only brings together many loose ends of the traditional treatment, but also leads directly into the practical use of vectors in general curvilinear coordinates by carefully separating those relationships which are topologically invariant from those which are not. Based on the essentially geometric nature of the subject, this approach builds consistently on students' prior knowledge and geometrical intuition. Written in an informal and personal style, Geometrical Vectors provides a handy guide for any student of vector analysis. Clear, carefully constructed line drawings illustrate key points in the text, and problem sets as well as physical examples are provided.

Geometric Analysis and Applications to Quantum Field Theory

Download Geometric Analysis and Applications to Quantum Field Theory PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1461200679
Total Pages : 213 pages
Book Rating : 4.4/5 (612 download)

DOWNLOAD NOW!


Book Synopsis Geometric Analysis and Applications to Quantum Field Theory by : Peter Bouwknegt

Download or read book Geometric Analysis and Applications to Quantum Field Theory written by Peter Bouwknegt and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 213 pages. Available in PDF, EPUB and Kindle. Book excerpt: In the last decade there has been an extraordinary confluence of ideas in mathematics and theoretical physics brought about by pioneering discoveries in geometry and analysis. The various chapters in this volume, treating the interface of geometric analysis and mathematical physics, represent current research interests. No suitable succinct account of the material is available elsewhere. Key topics include: * A self-contained derivation of the partition function of Chern- Simons gauge theory in the semiclassical approximation (D.H. Adams) * Algebraic and geometric aspects of the Knizhnik-Zamolodchikov equations in conformal field theory (P. Bouwknegt) * Application of the representation theory of loop groups to simple models in quantum field theory and to certain integrable systems (A.L. Carey and E. Langmann) * A study of variational methods in Hermitian geometry from the viewpoint of the critical points of action functionals together with physical backgrounds (A. Harris) * A review of monopoles in nonabelian gauge theories (M.K. Murray) * Exciting developments in quantum cohomology (Y. Ruan) * The physics origin of Seiberg-Witten equations in 4-manifold theory (S. Wu) Graduate students, mathematicians and mathematical physicists in the above-mentioned areas will benefit from the user-friendly introductory style of each chapter as well as the comprehensive bibliographies provided for each topic. Prerequisite knowledge is minimal since sufficient background material motivates each chapter.

Stratified Lie Groups and Potential Theory for Their Sub-Laplacians

Download Stratified Lie Groups and Potential Theory for Their Sub-Laplacians PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 3540718974
Total Pages : 812 pages
Book Rating : 4.5/5 (47 download)

DOWNLOAD NOW!


Book Synopsis Stratified Lie Groups and Potential Theory for Their Sub-Laplacians by : Andrea Bonfiglioli

Download or read book Stratified Lie Groups and Potential Theory for Their Sub-Laplacians written by Andrea Bonfiglioli and published by Springer Science & Business Media. This book was released on 2007-08-24 with total page 812 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides an extensive treatment of Potential Theory for sub-Laplacians on stratified Lie groups. It also provides a largely self-contained presentation of stratified Lie groups, and of their Lie algebra of left-invariant vector fields. The presentation is accessible to graduate students and requires no specialized knowledge in algebra or differential geometry.

Geometric Analysis

Download Geometric Analysis PDF Online Free

Author :
Publisher : American Mathematical Soc.
ISBN 13 : 1470423138
Total Pages : 457 pages
Book Rating : 4.4/5 (74 download)

DOWNLOAD NOW!


Book Synopsis Geometric Analysis by : Hubert L. Bray

Download or read book Geometric Analysis written by Hubert L. Bray and published by American Mathematical Soc.. This book was released on 2016-05-18 with total page 457 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume includes expanded versions of the lectures delivered in the Graduate Minicourse portion of the 2013 Park City Mathematics Institute session on Geometric Analysis. The papers give excellent high-level introductions, suitable for graduate students wishing to enter the field and experienced researchers alike, to a range of the most important areas of geometric analysis. These include: the general issue of geometric evolution, with more detailed lectures on Ricci flow and Kähler-Ricci flow, new progress on the analytic aspects of the Willmore equation as well as an introduction to the recent proof of the Willmore conjecture and new directions in min-max theory for geometric variational problems, the current state of the art regarding minimal surfaces in R3, the role of critical metrics in Riemannian geometry, and the modern perspective on the study of eigenfunctions and eigenvalues for Laplace–Beltrami operators.