An Experimental Study of Creation of Optimal Fracture Network for Heat Extraction from Engineered Geothermal Reservoirs

Download An Experimental Study of Creation of Optimal Fracture Network for Heat Extraction from Engineered Geothermal Reservoirs PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 290 pages
Book Rating : 4.:/5 (11 download)

DOWNLOAD NOW!


Book Synopsis An Experimental Study of Creation of Optimal Fracture Network for Heat Extraction from Engineered Geothermal Reservoirs by : Banambar Singh

Download or read book An Experimental Study of Creation of Optimal Fracture Network for Heat Extraction from Engineered Geothermal Reservoirs written by Banambar Singh and published by . This book was released on 2015 with total page 290 pages. Available in PDF, EPUB and Kindle. Book excerpt: Enhanced geothermal system has been successfully able to increase the permeability of the reservoir and hydro-fracturing is the conventional method of creating artificial fracture system. But more precise technique is required to reduce the cost of the geothermal energy extraction and this will require proper understanding of the thermo-mechanical behaviour of the reservoir rocks i.e. Granites. Current research work has focused on the thermo-mechanical properties of granites under various temperature and strain rate condition. Granites of two different areas i.e. Bundelkhand granite, India and Harcourt granite, Australia have been investigated for the research work. 4 different strain rates i.e. 0.05 mm/min, 0.5 mm/min, 5.0 mm/min and 50 mm/min at 3 different temperatures i.e. room temperature (25 °C), 200 °C and 400 °C were considered for experimental analysis. It was observed that at room temperature, with increasing strain rate the uniaxial compressive strength of the rock increases and the same trend is also observed at higher temperatures conditions. Whereas at low strain rate the compressive strength decreases with increase in temperature, while the trend is irregular at higher strain rates. Bundelkhand granites have thermal conductivity values between 3.1 to 3.6 W/m.K whereas that of Harcourt granite is 2.4 W/m.K. Sieve analysis of the fragmented particles due to UCS test suggested that there is no effect of strain rate on particle size distribution whereas higher temperatures produces more finer particles. It was observed that more than 75% of the fragmented particles are having diameter of greater than 11.3 mm. Effective size i.e. D10 was analysed and found that at room temperature (25 °C) 10% of fragmented particles are finer than 3.0 mm whereas at 200 °C and 400 °C 10% of finer particles are finer than 1.9 mm and 1.5 mm respectively. Numerical simulation results of the numerical simulation are quite analogous to the lab experimental data.

Investigating Fracture Network Creation During Hydraulic Stimulation in Enhanced Geothermal Systems

Download Investigating Fracture Network Creation During Hydraulic Stimulation in Enhanced Geothermal Systems PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : pages
Book Rating : 4.:/5 (126 download)

DOWNLOAD NOW!


Book Synopsis Investigating Fracture Network Creation During Hydraulic Stimulation in Enhanced Geothermal Systems by : Ayaka Abe

Download or read book Investigating Fracture Network Creation During Hydraulic Stimulation in Enhanced Geothermal Systems written by Ayaka Abe and published by . This book was released on 2021 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: During hydraulic stimulation treatment in an enhanced geothermal (EGS) reservoir, it has been suggested that a complex fracture network including both preexisting natural fractures and newly formed fractures is created. In this stimulation mechanism, a fracture propagating from a preexisting natural fracture and the interaction of newly formed fractures and preexisting natural fractures play an important role in the creation of a fracture network. Analyzing the interaction between preexisting fractures and newly formed fractures during hydraulic stimulation is thus necessary to understand the creation of a fracture network. We approached to this research question with laboratory and numerical experiments for an EGS reservoir where large preexisting fractures dominate. Laboratory scale hydraulic fracturing experiments were conducted to investigate how a fracture network is created when a propagating hydraulic fracture and a preexisting fracture interact. The physics-based numerical model developed in this work was used to investigate fracture network creation from a small scale area including a small number of fractures to a reservoir scale with tens of fractures. We analyzed the geological factors that affect the fracture network patterns through the laboratory and numerical experiments. We observed that the stress state and preexisting fracture orientation affect the fracture propagation pattern in the laboratory experiments. The numerical analysis shows that the stress field induced by an upstream hydraulic fracture causes asymmetric distributions of normal and shear stresses along the preexisting fracture when they intersect, which resulted in initiation of a wing crack from the fracture tip on the side with larger angles. The numerical results also showed that the complexity of the created fracture network is affected by the fracture intersection angle, stress state, and injection rates. We reviewed past EGS projects and analyzed the stimulation mechanism during their hydraulic stimulation treatment. This study implies that stimulating a reservoir with poorly oriented preexisting fractures may result a complex and broad shaped fracture network, which would be beneficial for energy recovery.

Experimental Studies on Heat Extraction from Fractured Geothermal Reservoirs

Download Experimental Studies on Heat Extraction from Fractured Geothermal Reservoirs PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 50 pages
Book Rating : 4.:/5 (81 download)

DOWNLOAD NOW!


Book Synopsis Experimental Studies on Heat Extraction from Fractured Geothermal Reservoirs by : Paul Kruger

Download or read book Experimental Studies on Heat Extraction from Fractured Geothermal Reservoirs written by Paul Kruger and published by . This book was released on 1982 with total page 50 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Heat Transfer Investigations for Optimal Harnessing of Enhanced Geothermal Systems

Download Heat Transfer Investigations for Optimal Harnessing of Enhanced Geothermal Systems PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : pages
Book Rating : 4.:/5 (125 download)

DOWNLOAD NOW!


Book Synopsis Heat Transfer Investigations for Optimal Harnessing of Enhanced Geothermal Systems by : Esuru Rita Okoroafor

Download or read book Heat Transfer Investigations for Optimal Harnessing of Enhanced Geothermal Systems written by Esuru Rita Okoroafor and published by . This book was released on 2021 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Enhanced Geothermal Systems (EGS) offer the opportunity of exploiting the vast energy resources contained in hot impermeable rocks. In such rocks, the natural flow capacity of the system may not be sufficient to support adequate geothermal applications until it is enhanced by opening up existing fractures and propagating new fractures. Cold fluid is injected into the reservoir to exploit the energy resource, whose permeability has been enhanced. The increased permeability allows the fluid to circulate through the opened fractures to production or extraction well(s), thereby capturing and transporting the heat contained in the hot impermeable rock for power generation. Accurate prediction of the thermal performance of EGS depends on an understanding of how the heat transport is affected by the presence of the fracture(s) -- the primary flow conduit of EGS. These fractures may have aperture variability that could create channels and alter flow paths, affecting the availability of surface area for heat transfer. The overall goal of this study was to understand the fracture topology, investigate how it can impact flow and heat transport, and demonstrate ways Enhanced Geothermal Systems can be harnessed to optimize thermal performance. To achieve the goal of this study, a systematic fracture characterization approach was used, and numerical simulation models were used to study the physical processes that govern the interaction between the fluid and the rock during heat extraction from Enhanced Geothermal Systems. Using variogram modeling and Sequential Gaussian Simulation method, fracture apertures representing actual fractures were generated for lab-scale and field-scale investigations. Fracture characterization metrics such as the Joint Roughness Coefficient (JRC) and Hurst exponent were used in analyzing the data. Geometric anisotropy was a vital character of the generated fracture aperture distributions, which was seen to originate from the process of shearing or slip. Flow and heat transport relative to the direction of fracture shear was studied, with the perpendicular flow configuration being perpendicular to the direction of fracture shear. In contrast, the parallel flow configuration had flow in the same direction as the fracture shear direction. It was demonstrated in this study that the flow wetted surface area had a direct and significant contribution to the amount of heat extracted. For the lab-scale fractures, the JRC confirmed geometric anisotropy of the fracture aperture and was seen to have a direct correlation with the flow contact area. The lower the difference in JRC values between the perpendicular and parallel flow configurations, the more flow contact area expected in the perpendicular flow direction, which will lead to more heat extracted from the rock. From the variogram model parameters, it was deduced that high geometric anisotropy results in high differences in thermal drawdown and consequently a high difference in energy extracted. The thermal performance appeared to be better in the perpendicular flow configuration with a ratio of 70:30 for the lab-scale fractures. For the field-scale fractures, it was seen that most of the fracture aperture distributions with a geometric anisotropy ratio of 2 had Hurst exponents of fracture surface aperture variability found in nature. For all the fracture aperture distributions analyzed for the field scale, the perpendicular flow configuration resulted in better thermal performance than the parallel flow configuration with a ratio of 58:42. Furthermore, for the geometric anisotropy ratio of 2, the ratio was 70:30. The perpendicular flow configuration had the injected fluid move through tortuous flow paths. These tortuous flow paths contributed to more fracture surface area being contacted by the flowing fluid, leading to an improved thermal performance in that flow configuration. Throughout this study, temperature-dependent viscosity was used. However, a section of this study investigated the impact of using a constant viscosity in the thermohydraulic model. It was seen that for fractures with smooth, uniform apertures, for all temperature ranges and at the operating conditions being modeled, there was no significant difference between using a constant viscosity or a temperature-dependent viscosity in modeling an Enhanced Geothermal System. However, for fractures with spatial variations, it was determined that modeling with a temperature-dependent viscosity was necessary, especially for systems with high differences in reservoir and injection temperatures, and for fractures with high correlation lengths. The impact of thermal stresses on heat extraction was also investigated. An analog Enhanced Geothermal System, the Altona Field Laboratory, was also studied for thermo-mechanical influences. It was found out that the injection of hot water into the cold rock resulted in thermal stress generation and reduction in the aperture but did not cause significant changes to the temperature profile due to the small volumetric flow rate through the system. Also, anisotropic aperture distributions were studied to determine the impact of thermoelasticity on the heat extraction of Enhanced Geothermal Systems. It was shown that when thermoelasticity is taken into consideration, the thermal drawdown could either be improved or deteriorated depending on the nature of the aperture distribution. The impact of fracture aperture variability was investigated for Enhanced Geothermal Systems using supercritical CO2 as working fluids. It was established that CO2 as an EGS working fluid would result in better heat extracted from the system if the fractures are considered smooth, which agrees with related studies. However, where there is spatial variation in the fracture aperture, channeling could be detrimental to CO2, especially at high fracture correlation lengths and high mass flow rates, due to the high mobility of CO2. The following are the main contributions from this study. First, it has been demonstrated that heat transport is affected by the geometric anisotropy of fracture surfaces. It was determined that in most cases, flowing perpendicular to the direction of shear or slip results in more heat extracted due to more contact of the fluid with the rock while moving through tortuous flow paths. Secondly, the conditions under which a constant viscosity can be used in modeling EGS were determined. If the fractures are known to be smooth, have low correlation lengths, or have distributed surface areas, a constant viscosity can be used in the model, especially if the difference between the reservoir temperature and the injection water temperature is small. However, for anisotropic fracture surfaces, surfaces with high correlations lengths or high tortuosity, and when the difference between the reservoir temperature and injection water temperature is large, the use of constant viscosity could result in significant computational errors from the actual. Thirdly, it has been shown that thermal drawdown could either be improved or deteriorate when thermoelasticity is considered. This finding is different from studies previous studies that have looked into coupling thermohydromechanical processes for fractures with spatial variations and suggests that Enhanced Geothermal Systems may benefit from thermal stimulation. Finally, this work shows the first comparison between CO2 and water at a field scale considering fracture aperture variability. Recommended future work includes modeling of vertical fractures with spatial variations in fracture aperture to investigate how convection may impact the current findings; considering multiple fractures with spatial variations in the fracture aperture; considering non-Darcy flow in the simulation models; coupling geomechanics with the study of CO2 on fractures with spatial variations, and developing proxy models that are quicker to perform the thermohydraulic and thermohydromechanical simulations.

Geothermal Reservoir Engineering

Download Geothermal Reservoir Engineering PDF Online Free

Author :
Publisher : Academic Press
ISBN 13 : 0123838819
Total Pages : 379 pages
Book Rating : 4.1/5 (238 download)

DOWNLOAD NOW!


Book Synopsis Geothermal Reservoir Engineering by : Malcolm Alister Grant

Download or read book Geothermal Reservoir Engineering written by Malcolm Alister Grant and published by Academic Press. This book was released on 2011-04-01 with total page 379 pages. Available in PDF, EPUB and Kindle. Book excerpt: As nations alike struggle to diversify and secure their power portfolios, geothermal energy, the essentially limitless heat emanating from the earth itself, is being harnessed at an unprecedented rate. For the last 25 years, engineers around the world tasked with taming this raw power have used Geothermal Reservoir Engineering as both a training manual and a professional reference. This long-awaited second edition of Geothermal Reservoir Engineering is a practical guide to the issues and tasks geothermal engineers encounter in the course of their daily jobs. The book focuses particularly on the evaluation of potential sites and provides detailed guidance on the field management of the power plants built on them. With over 100 pages of new material informed by the breakthroughs of the last 25 years, Geothermal Reservoir Engineering remains the only training tool and professional reference dedicated to advising both new and experienced geothermal reservoir engineers. - The only resource available to help geothermal professionals make smart choices in field site selection and reservoir management - Practical focus eschews theory and basics- getting right to the heart of the important issues encountered in the field - Updates include coverage of advances in EGS (enhanced geothermal systems), well stimulation, well modeling, extensive field histories and preparing data for reservoir simulation - Case studies provide cautionary tales and best practices that can only be imparted by a seasoned expert

Hydraulic fracturing and geothermal energy

Download Hydraulic fracturing and geothermal energy PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 9400968841
Total Pages : 519 pages
Book Rating : 4.4/5 (9 download)

DOWNLOAD NOW!


Book Synopsis Hydraulic fracturing and geothermal energy by : S. Nemat-Nassar

Download or read book Hydraulic fracturing and geothermal energy written by S. Nemat-Nassar and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 519 pages. Available in PDF, EPUB and Kindle. Book excerpt: Hydraulic fracturing has been and continues to be a major techno logical tool in oil and gas recovery, nuclear and other waste disposal, mining and particularly in-situ coal gasification, and, more recently, in geothermal heat recovery, particularly extracting heat from hot dry rock masses. The understanding of the fracture process under the ac tion of pressurized fluid at various temperatures is of fundamental scientific importance, which requires an adequate description of thermomechanical properties of subsurface rock, fluid-solid interaction effects, as well as degradation of the host rock due to temperature gradients introduced by heat extraction. Considerable progress has been made over the past several years in laboratory experiments, analytical and numerical modeling, and in-situ field studies in various aspects of hydraulic fracturing and geothermal energy extraction, by researchers in the United States and Japan and also elsewhere. However, the results have been scattered throughout the literature. Therefore, the time seemed ripe for bringing together selected researchers from the two countries, as well as observers from other countries, in order to survey the state of the art, exchange scientific information, and establish closer collaboration for further, better coordinated scientific effort in this important area of research and exploration.

Mining the Earth's Heat: Hot Dry Rock Geothermal Energy

Download Mining the Earth's Heat: Hot Dry Rock Geothermal Energy PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 3540689109
Total Pages : 669 pages
Book Rating : 4.5/5 (46 download)

DOWNLOAD NOW!


Book Synopsis Mining the Earth's Heat: Hot Dry Rock Geothermal Energy by : Donald W. Brown

Download or read book Mining the Earth's Heat: Hot Dry Rock Geothermal Energy written by Donald W. Brown and published by Springer Science & Business Media. This book was released on 2012-04-23 with total page 669 pages. Available in PDF, EPUB and Kindle. Book excerpt: Mining the Earth's Heat: Hot Dry Rock Geothermal Energy describes the work carried out by the Los Alamos National Laboratory to turn an idealistic concept - that of drawing useful amounts of energy from the vast underground store of hot rock at reachable depths - into a practical reality. This book provides comprehensive documentation of the over two decades of experiments carried out at the test site at Fenton Hill, New Mexico, where the feasibility of accessing and extracting this vast natural resource was finally demonstrated. It also discusses the numerous technical, administrative, and financial hurdles that had to be overcome along the way. This publication will no doubt prove invaluable to researchers around the world as they strive to move this now-proven technology toward commercial viability. In addition, it is a valuable source of relevant information for anyone interested in the world energy outlook for the 21st century and beyond.

Fracture Characterization in Geothermal Reservoirs Using Time-lapse Electric Potential Data

Download Fracture Characterization in Geothermal Reservoirs Using Time-lapse Electric Potential Data PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : pages
Book Rating : 4.:/5 (856 download)

DOWNLOAD NOW!


Book Synopsis Fracture Characterization in Geothermal Reservoirs Using Time-lapse Electric Potential Data by : Lilja Magnúsdóttir

Download or read book Fracture Characterization in Geothermal Reservoirs Using Time-lapse Electric Potential Data written by Lilja Magnúsdóttir and published by . This book was released on 2013 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: The configuration of fractures in a geothermal reservoir is central to the performance of the system. The interconnected fractures control the heat and mass transport in the reservoir and if the fluid reaches production wells before it is fully heated, unfavorable effects on energy production may result due to decreasing fluid enthalpies. Consequently, inappropriate placing of injection or production wells can lead to premature thermal breakthrough. Thus, fracture characterization in geothermal reservoirs is an important task in order to design the recovery strategy appropriately and increase the overall efficiency of the power production. This is true both in naturally fractured geothermal systems as well as in Enhanced Geothermal Systems (EGS) with man-made fractures produced by hydraulic stimulation. In this study, the aim was to estimate fracture connectivity in geothermal reservoirs using a conductive fluid injection and an inversion of time-lapse electric potential data. Discrete fracture networks were modeled and a flow simulator was used first to simulate the flow of a conductive tracer through the reservoirs. Then, the simulator was applied to solve the electric fields at each time step by utilizing the analogy between Ohm's law and Darcy's law. The electric potential difference between well-pairs drops as a conductive fluid fills fracture paths from the injector towards the producer. Therefore, the time-lapse electric potential data can be representative of the connectivity of the fracture network. Flow and electric simulations were performed on models of various fracture networks and inverse modeling was used to match reservoir models to other fracture networks in a library of networks by comparing the time-histories of the electric potential. Two fracture characterization indices were investigated for describing the character of the fractured reservoirs; the fractional connected area and the spatial fractal dimension. In most cases, the electrical potential approach was used successfully to estimate both the fractional connected area of the reservoirs and the spatial fractal dimension. The locations of the linked fracture sets were also predicted correctly. Next, the electric method was compared to using only the simple tracer return curves at the producers in the inverse analysis. The study showed that the fracture characterization indices were estimated somewhat better using the electric approach. The locations of connected areas in the predicted network were also in many cases incorrect when only the tracer return curves were used. The use of the electric approach to predict thermal return was investigated and compared to using just the simple tracer return curves. The electric approach predicted the thermal return curves relatively accurately. However, in some cases the tracer return gave a better estimation of the thermal behavior. The electric measurements are affected by both the time it takes for the conductive tracer to reach the production well, as well as the overall location of the connected areas. When only the tracer return curves are used in the inverse analysis, only the concentration of tracer at the producer is measured but there is a good correlation between the tracer breakthrough time and the thermal breakthrough times. Thus, the tracer return curves can predict the thermal return accurately but the overall location of fractures might not be predicted correctly. The electric data and the tracer return data were also used together in an inverse analysis to predict the thermal returns. The results were in some cases somewhat better than using only the tracer return curves or only the electric data. A different injection scheme was also tested for both approaches. The electric data characterized the overall fracture network better than the tracer return curves so when the well pattern was changed from what was used during the tracer and electric measurements, the electric approach predicted the new thermal return better. In addition, the thermal return was predicted considerably better using the electric approach when measurements over a shorter period of time were used in the inverse analysis. In addition to characterizing the fracture distribution better, the electric approach can give information about the conductive fluid flowing through the fracture network even before it has reached the production wells.

A Thermoelastic Hydraulic Fracture Design Tool for Geothermal Reservoir Development

Download A Thermoelastic Hydraulic Fracture Design Tool for Geothermal Reservoir Development PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 5 pages
Book Rating : 4.:/5 (684 download)

DOWNLOAD NOW!


Book Synopsis A Thermoelastic Hydraulic Fracture Design Tool for Geothermal Reservoir Development by :

Download or read book A Thermoelastic Hydraulic Fracture Design Tool for Geothermal Reservoir Development written by and published by . This book was released on 2003 with total page 5 pages. Available in PDF, EPUB and Kindle. Book excerpt: Geothermal energy is recovered by circulating water through heat exchange areas within a hot rock mass. Geothermal reservoir rock masses generally consist of igneous and metamorphic rocks that have low matrix permeability. Therefore, cracks and fractures play a significant role in extraction of geothermal energy by providing the major pathways for fluid flow and heat exchange. Thus, knowledge of conditions leading to formation of fractures and fracture networks is of paramount importance. Furthermore, in the absence of natural fractures or adequate connectivity, artificial fracture are created in the reservoir using hydraulic fracturing. At times, the practice aims to create a number of parallel fractures connecting a pair of wells. Multiple fractures are preferred because of the large size necessary when using only a single fracture. Although the basic idea is rather simple, hydraulic fracturing is a complex process involving interactions of high pressure fluid injections with a stressed hot rock mass, mechanical interaction of induced fractures with existing natural fractures, and the spatial and temporal variations of in-situ stress. As a result it is necessary to develop tools that can be used to study these interactions as an integral part of a comprehensive approach to geothermal reservoir development, particularly enhanced geothermal systems. In response to this need we have set out to develop advanced thermo-mechanical models for design of artificial fractures and rock fracture research in geothermal reservoirs. These models consider the significant hydraulic and thermo-mechanical processes and their interaction with the in-situ stress state. Wellbore failure and fracture initiation is studied using a model that fully couples poro-mechanical and thermo-mechanical effects. The fracture propagation model is based on a complex variable and regular displacement discontinuity formulations. In the complex variable approach the displacement discontinuities are defined from the numerical solution of a complex hypersingular integral equation written for a given fracture configuration and loading. The fracture propagation studies include modeling interaction of induced fractures with existing discontinuities such as faults and joints. In addition to the fracture propagation studies, two- and three-dimensional heat extraction solution algorithms have been developed and used to estimate heat extraction and the variations of the reservoir stress with cooling. The numerical models have been developed in a user-friendly environment to create a tool for improving fracture design and investigating single or multiple fracture propagation in rock.

Fractal Characterization of Subsurface Fracture Network for Geothermal Energy Extraction System

Download Fractal Characterization of Subsurface Fracture Network for Geothermal Energy Extraction System PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : pages
Book Rating : 4.:/5 (727 download)

DOWNLOAD NOW!


Book Synopsis Fractal Characterization of Subsurface Fracture Network for Geothermal Energy Extraction System by :

Download or read book Fractal Characterization of Subsurface Fracture Network for Geothermal Energy Extraction System written by and published by . This book was released on 1993 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: As a new modeling procedure of geothermal energy extraction systems, the authors present two dimensional and three dimensional modeling techniques of subsurface fracture network, based on fractal geometry. Fluid flow in fractured rock occurs primarily through a connected network of discrete fractures. The fracture network approach, therefore, seeks to model fluid flow and heat transfer through such rocks directly. Recent geophysical investigations have revealed that subsurface fracture networks can be described by "fractal geometry". In this paper, a modeling procedure of subsurface fracture network is proposed based on fractal geometry. Models of fracture networks are generated by distributing fractures randomly, following the fractal relation between fracture length r and the number of fractures N expressed with fractal dimension D as N =C·r-D, where C is a constant to signify the fracture density of the rock mass. This procedure makes it possible to characterize geothermal reservoirs by the parameters measured from field data, such as core sampling. In this characterization, the fractal dimension D and the fracture density parameter C of a geothermal reservoir are used as parameters to model the subsurface fracture network. Using this model, the transmissivities between boreholes are also obtained as a function of the fracture density parameter C, and a parameter study of system performances, such as heat extraction, is performed. The results show the dependence of thermal recovery of geothermal reservoir on fracture density parameter C.

Proceedings of the World Geothermal Congress, 1995, Florence, Italy, 18-31 May 1995

Download Proceedings of the World Geothermal Congress, 1995, Florence, Italy, 18-31 May 1995 PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 742 pages
Book Rating : 4.F/5 ( download)

DOWNLOAD NOW!


Book Synopsis Proceedings of the World Geothermal Congress, 1995, Florence, Italy, 18-31 May 1995 by :

Download or read book Proceedings of the World Geothermal Congress, 1995, Florence, Italy, 18-31 May 1995 written by and published by . This book was released on 1995 with total page 742 pages. Available in PDF, EPUB and Kindle. Book excerpt: Four hundred and fifty-four papers arranged in 15 sections.

Fracture Propagation and Permeability Change Under Poro-thermoelastic Loads & Silica Reactivity in Enhanced Geothermal Systems

Download Fracture Propagation and Permeability Change Under Poro-thermoelastic Loads & Silica Reactivity in Enhanced Geothermal Systems PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : pages
Book Rating : 4.:/5 (873 download)

DOWNLOAD NOW!


Book Synopsis Fracture Propagation and Permeability Change Under Poro-thermoelastic Loads & Silica Reactivity in Enhanced Geothermal Systems by :

Download or read book Fracture Propagation and Permeability Change Under Poro-thermoelastic Loads & Silica Reactivity in Enhanced Geothermal Systems written by and published by . This book was released on 2009 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Geothermal energy is recovered by circulating water through heat exchange areas within a hot rock mass. Geothermal reservoir rock masses generally consist of igneous and metamorphic rocks that have low matrix permeability. Therefore, cracks and fractures play a significant role in extraction of geothermal energy by providing the major pathways for fluid flow and heat exchange. Therefore, knowledge of the conditions leading to formation of fractures and fracture networks is of paramount importance. Furthermore, in the absence of natural fractures or adequate connectivity, artificial fractures are created in the reservoir using hydraulic fracturing. Multiple fractures are preferred because of the large size necessary when using only a single fracture. Although the basic idea is rather simple, hydraulic fracturing is a complex process involving interactions of high pressure fluid injections with a stressed hot rock mass, mechanical interaction of induced fractures with existing natural fractures, and the spatial and temporal variations of in-situ stress. As a result, it is necessary to develop tools that can be used to study these interactions as an integral part of a comprehensive approach to geothermal reservoir development, particularly enhanced geothermal systems. In response to this need we have developed advanced poro-thermo-chemo-mechanical fracture models for rock fracture research in support of EGS design. The fracture propagation models are based on a regular displacement discontinuity formulation. The fracture propagation studies include modeling interaction of induced fractures. In addition to the fracture propagation studies, two-dimensional solution algorithms have been developed and used to estimate the impact of pro-thermo-chemical processes on fracture permeability and reservoir pressure. Fracture permeability variation is studied using a coupled thermo-chemical model with quartz reaction kinetics. The model is applied to study quartz precipitation/dissolution, as well as the variation in fracture aperture and pressure. Also, a three-dimensional model of injection/extraction has been developed to consider the impact poro- and thermoelastic stresses on fracture slip and injection pressure. These investigations shed light on the processes involved in the observed phenomenon of injection pressure variation (e.g., in Coso), and allow the assessment of the potential of thermal and chemical stimulation strategies.

Heat Transfer Applications for the Stimulated Reservoir Volume

Download Heat Transfer Applications for the Stimulated Reservoir Volume PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : pages
Book Rating : 4.:/5 (76 download)

DOWNLOAD NOW!


Book Synopsis Heat Transfer Applications for the Stimulated Reservoir Volume by : Srikanth Thoram

Download or read book Heat Transfer Applications for the Stimulated Reservoir Volume written by Srikanth Thoram and published by . This book was released on 2011 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Multistage hydraulic fracturing of horizontal wells continues to be a major technological tool in the oil and gas industry. Creation of multiple transverse fractures in shale gas has enabled production from very low permeability. The strategy entails the development of a Stimulated Reservoir Volume (SRV), defined as the volume of reservoir, which is effectively stimulated to increase the well performance. An ideal model for a shale gas SRV is a rectangle of length equal to horizontal well length and width equal to twice the half length of the created hydraulic fractures. This project focused on using the Multistage Transverse Fractured Horizontal Wells (MTFHW) for two novel applications. The first application considers using the SRV of a shale gas well, after the gas production rate drops below the economic limit, for low grade geothermal heat extraction. Cold water is pumped into the fracture network through one horizontal well drilled at the fracture tips. Heat is transferred to the water through the fracture surface. The hot water is then recovered through a second horizontal well drilled at the other end of the fracture network. The basis of this concept is to use the already created stimulated reservoir volume for heat transfer purposes. This technique was applied to the SRV of Haynesville Shale and the results were discussed in light of the economics of the project. For the second application, we considered the use of a similarly created SRV for producing hydrocarbon products from oil shale. Thermal decomposition of kerogen to oil and gas requires heating the oil shale to 700°F. High quality saturated steam generated using a small scale nuclear plant was used for heating the formation to the necessary temperature. Analytical and numerical models are developed for modeling heat transfer in a single fracture unit of MTFHW. These models suggest that successful reuse of Haynesville Shale gas production wells for low grade geothermal heat extraction and the project appears feasible both technically and economically. The economics of the project is greatly aided by eliminating well drilling and completion costs. The models also demonstrate the success of using MTFHW array for heating oil shale using SMR technology.

Rock Fractures and Fluid Flow

Download Rock Fractures and Fluid Flow PDF Online Free

Author :
Publisher : National Academies Press
ISBN 13 : 0309049962
Total Pages : 568 pages
Book Rating : 4.3/5 (9 download)

DOWNLOAD NOW!


Book Synopsis Rock Fractures and Fluid Flow by : National Research Council

Download or read book Rock Fractures and Fluid Flow written by National Research Council and published by National Academies Press. This book was released on 1996-08-27 with total page 568 pages. Available in PDF, EPUB and Kindle. Book excerpt: Scientific understanding of fluid flow in rock fracturesâ€"a process underlying contemporary earth science problems from the search for petroleum to the controversy over nuclear waste storageâ€"has grown significantly in the past 20 years. This volume presents a comprehensive report on the state of the field, with an interdisciplinary viewpoint, case studies of fracture sites, illustrations, conclusions, and research recommendations. The book addresses these questions: How can fractures that are significant hydraulic conductors be identified, located, and characterized? How do flow and transport occur in fracture systems? How can changes in fracture systems be predicted and controlled? Among other topics, the committee provides a geomechanical understanding of fracture formation, reviews methods for detecting subsurface fractures, and looks at the use of hydraulic and tracer tests to investigate fluid flow. The volume examines the state of conceptual and mathematical modeling, and it provides a useful framework for understanding the complexity of fracture changes that occur during fluid pumping and other engineering practices. With a practical and multidisciplinary outlook, this volume will be welcomed by geologists, petroleum geologists, geoengineers, geophysicists, hydrologists, researchers, educators and students in these fields, and public officials involved in geological projects.

Discrete Fracture Network Modeling and Simulation Using EDFM

Download Discrete Fracture Network Modeling and Simulation Using EDFM PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 280 pages
Book Rating : 4.:/5 (127 download)

DOWNLOAD NOW!


Book Synopsis Discrete Fracture Network Modeling and Simulation Using EDFM by : Joseph Alexander Leines Artieda

Download or read book Discrete Fracture Network Modeling and Simulation Using EDFM written by Joseph Alexander Leines Artieda and published by . This book was released on 2020 with total page 280 pages. Available in PDF, EPUB and Kindle. Book excerpt: Recent advances in fracture network characterization have identified high degrees of heterogeneity and permeability anisotropy in conventional reservoirs and complex fracture network generation after well stimulation in unconventional reservoirs. Traditional methods to model such complex systems may not capture the key role of fracture network geometry, spatial distribution, and connectivity on well performance. Because of the ubiquitous presence of natural fractures in conventional and unconventional reservoirs, it is key to provide efficient tools to model them accurately. We extend the application of the embedded discrete fracture model (EDFM) to study the influence of natural fractures represented by discrete fracture network (DFN) models on well performance. Current state-of-the-art modeling technologies have been able to describe natural fracture systems as a whole, without providing flexibility to extract, vary, and group fracture network properties. Our developed implementations analyze fracture network topology and provide advanced mechanisms to model and understand fracture network properties. The first application features a numerical model in combination with EDFM to study water intrusion in a naturally fractured carbonate reservoir. We developed a workflow that overcomes conventional methods limitations by modeling the fracture network as a graph. This representation allowed to identify the shortest paths that connect the nearby water zone with the well perforations, providing the mechanisms to obtain a satisfactory history match of the reservoir. Additionally, we modeled a critically-stressed carbonate field by modeling faults interactions with natural fractures. Our workflow allowed to discretize the hydraulic backbone of the field and assess its influence on the entire field gas production. Our next application applies a connectivity analysis using an efficient and robust collision detection algorithm capable of identifying groups of connected or isolated natural fractures in an unconventional reservoir. This study uses numerical models in combination with EDFM to analyze the effect of fracture network connectivity on well production using fractal DFN models. We concluded that fracture network connectivity plays a key role on the behavior of fractured reservoirs with negligible effect of non-connected fractures. Finally, we performed assisted history matching (AHM) using fractal methods to characterize in a probabilistic manner the reservoir properties and to offer key insights regarding spatial distribution, number, and geometry of both hydraulic and natural fractures in unconventional reservoirs. In this work, we provided computational tools that constitute the foundations to conduct advanced modeling using DFN models in conjunction with EDFM in several reservoir engineering areas such as well-interference, water intrusion, water breakthrough, enhanced oil recovery (EOR) efficiency characterization, and fracture network connectivity assessments. The benefits of our work extend to conventional, unconventional, and geothermal reservoirs

Modelling the Evolution of Natural Fracture Networks

Download Modelling the Evolution of Natural Fracture Networks PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3030524140
Total Pages : 237 pages
Book Rating : 4.0/5 (35 download)

DOWNLOAD NOW!


Book Synopsis Modelling the Evolution of Natural Fracture Networks by : Michael John Welch

Download or read book Modelling the Evolution of Natural Fracture Networks written by Michael John Welch and published by Springer Nature. This book was released on 2020-09-18 with total page 237 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents and describes an innovative method to simulate the growth of natural fractural networks in different geological environments, based on their geological history and fundamental geomechanical principles. The book develops techniques to simulate the growth and interaction of large populations of layer-bound fracture directly, based on linear elastic fracture mechanics and subcritical propagation theory. It demonstrates how to use these techniques to model the nucleation, propagation and interaction of layer-bound fractures in different orientations around large scale geological structures, based on the geological history of the structures. It also explains how to use these techniques to build more accurate discrete fracture network (DFN) models at a reasonable computational cost. These models can explain many of the properties of natural fracture networks observed in outcrops, using actual outcrop examples. Finally, the book demonstrates how it can be incorporated into flow modelling workflows using subsurface examples from the hydrocarbon and geothermal industries. Modelling the Evolution of Natural Fracture Networks will be of interest to anyone curious about understanding and predicting the evolution of complex natural fracture networks across large geological structures. It will be helpful to those modelling fluid flow through fractures, or the geomechanical impact of fracture networks, in the hydrocarbon, geothermal, CO2 sequestration, groundwater and engineering industries.

Petroleum Abstracts

Download Petroleum Abstracts PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 1752 pages
Book Rating : 4.F/5 ( download)

DOWNLOAD NOW!


Book Synopsis Petroleum Abstracts by :

Download or read book Petroleum Abstracts written by and published by . This book was released on 1993 with total page 1752 pages. Available in PDF, EPUB and Kindle. Book excerpt: