Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Adversarial Robustness Of Deep Learning Models
Download Adversarial Robustness Of Deep Learning Models full books in PDF, epub, and Kindle. Read online Adversarial Robustness Of Deep Learning Models ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis Adversarial Machine Learning by : Yevgeniy Tu
Download or read book Adversarial Machine Learning written by Yevgeniy Tu and published by Springer Nature. This book was released on 2022-05-31 with total page 152 pages. Available in PDF, EPUB and Kindle. Book excerpt: The increasing abundance of large high-quality datasets, combined with significant technical advances over the last several decades have made machine learning into a major tool employed across a broad array of tasks including vision, language, finance, and security. However, success has been accompanied with important new challenges: many applications of machine learning are adversarial in nature. Some are adversarial because they are safety critical, such as autonomous driving. An adversary in these applications can be a malicious party aimed at causing congestion or accidents, or may even model unusual situations that expose vulnerabilities in the prediction engine. Other applications are adversarial because their task and/or the data they use are. For example, an important class of problems in security involves detection, such as malware, spam, and intrusion detection. The use of machine learning for detecting malicious entities creates an incentive among adversaries to evade detection by changing their behavior or the content of malicius objects they develop. The field of adversarial machine learning has emerged to study vulnerabilities of machine learning approaches in adversarial settings and to develop techniques to make learning robust to adversarial manipulation. This book provides a technical overview of this field. After reviewing machine learning concepts and approaches, as well as common use cases of these in adversarial settings, we present a general categorization of attacks on machine learning. We then address two major categories of attacks and associated defenses: decision-time attacks, in which an adversary changes the nature of instances seen by a learned model at the time of prediction in order to cause errors, and poisoning or training time attacks, in which the actual training dataset is maliciously modified. In our final chapter devoted to technical content, we discuss recent techniques for attacks on deep learning, as well as approaches for improving robustness of deep neural networks. We conclude with a discussion of several important issues in the area of adversarial learning that in our view warrant further research. Given the increasing interest in the area of adversarial machine learning, we hope this book provides readers with the tools necessary to successfully engage in research and practice of machine learning in adversarial settings.
Download or read book Metric Learning written by Aurélien Muise and published by Springer Nature. This book was released on 2022-05-31 with total page 139 pages. Available in PDF, EPUB and Kindle. Book excerpt: Similarity between objects plays an important role in both human cognitive processes and artificial systems for recognition and categorization. How to appropriately measure such similarities for a given task is crucial to the performance of many machine learning, pattern recognition and data mining methods. This book is devoted to metric learning, a set of techniques to automatically learn similarity and distance functions from data that has attracted a lot of interest in machine learning and related fields in the past ten years. In this book, we provide a thorough review of the metric learning literature that covers algorithms, theory and applications for both numerical and structured data. We first introduce relevant definitions and classic metric functions, as well as examples of their use in machine learning and data mining. We then review a wide range of metric learning algorithms, starting with the simple setting of linear distance and similarity learning. We show how one may scale-up these methods to very large amounts of training data. To go beyond the linear case, we discuss methods that learn nonlinear metrics or multiple linear metrics throughout the feature space, and review methods for more complex settings such as multi-task and semi-supervised learning. Although most of the existing work has focused on numerical data, we cover the literature on metric learning for structured data like strings, trees, graphs and time series. In the more technical part of the book, we present some recent statistical frameworks for analyzing the generalization performance in metric learning and derive results for some of the algorithms presented earlier. Finally, we illustrate the relevance of metric learning in real-world problems through a series of successful applications to computer vision, bioinformatics and information retrieval. Table of Contents: Introduction / Metrics / Properties of Metric Learning Algorithms / Linear Metric Learning / Nonlinear and Local Metric Learning / Metric Learning for Special Settings / Metric Learning for Structured Data / Generalization Guarantees for Metric Learning / Applications / Conclusion / Bibliography / Authors' Biographies
Book Synopsis Adversarial Robustness for Machine Learning by : Pin-Yu Chen
Download or read book Adversarial Robustness for Machine Learning written by Pin-Yu Chen and published by Academic Press. This book was released on 2022-08-20 with total page 300 pages. Available in PDF, EPUB and Kindle. Book excerpt: Adversarial Robustness for Machine Learning summarizes the recent progress on this topic and introduces popular algorithms on adversarial attack, defense and veri?cation. Sections cover adversarial attack, veri?cation and defense, mainly focusing on image classi?cation applications which are the standard benchmark considered in the adversarial robustness community. Other sections discuss adversarial examples beyond image classification, other threat models beyond testing time attack, and applications on adversarial robustness. For researchers, this book provides a thorough literature review that summarizes latest progress in the area, which can be a good reference for conducting future research. In addition, the book can also be used as a textbook for graduate courses on adversarial robustness or trustworthy machine learning. While machine learning (ML) algorithms have achieved remarkable performance in many applications, recent studies have demonstrated their lack of robustness against adversarial disturbance. The lack of robustness brings security concerns in ML models for real applications such as self-driving cars, robotics controls and healthcare systems. - Summarizes the whole field of adversarial robustness for Machine learning models - Provides a clearly explained, self-contained reference - Introduces formulations, algorithms and intuitions - Includes applications based on adversarial robustness
Book Synopsis Shape, Contour and Grouping in Computer Vision by : David A. Forsyth
Download or read book Shape, Contour and Grouping in Computer Vision written by David A. Forsyth and published by Springer Science & Business Media. This book was released on 1999-11-03 with total page 340 pages. Available in PDF, EPUB and Kindle. Book excerpt: Computer vision has been successful in several important applications recently. Vision techniques can now be used to build very good models of buildings from pictures quickly and easily, to overlay operation planning data on a neuros- geon’s view of a patient, and to recognise some of the gestures a user makes to a computer. Object recognition remains a very di cult problem, however. The key questions to understand in recognition seem to be: (1) how objects should be represented and (2) how to manage the line of reasoning that stretches from image data to object identity. An important part of the process of recognition { perhaps, almost all of it { involves assembling bits of image information into helpful groups. There is a wide variety of possible criteria by which these groups could be established { a set of edge points that has a symmetry could be one useful group; others might be a collection of pixels shaded in a particular way, or a set of pixels with coherent colour or texture. Discussing this process of grouping requires a detailed understanding of the relationship between what is seen in the image and what is actually out there in the world.
Book Synopsis Adversarial Machine Learning by : Anthony D. Joseph
Download or read book Adversarial Machine Learning written by Anthony D. Joseph and published by Cambridge University Press. This book was released on 2019-02-21 with total page 341 pages. Available in PDF, EPUB and Kindle. Book excerpt: This study allows readers to get to grips with the conceptual tools and practical techniques for building robust machine learning in the face of adversaries.
Book Synopsis Malware Detection by : Mihai Christodorescu
Download or read book Malware Detection written by Mihai Christodorescu and published by Springer Science & Business Media. This book was released on 2007-03-06 with total page 307 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book captures the state of the art research in the area of malicious code detection, prevention and mitigation. It contains cutting-edge behavior-based techniques to analyze and detect obfuscated malware. The book analyzes current trends in malware activity online, including botnets and malicious code for profit, and it proposes effective models for detection and prevention of attacks using. Furthermore, the book introduces novel techniques for creating services that protect their own integrity and safety, plus the data they manage.
Book Synopsis An Introduction to Computer Security by : Barbara Guttman
Download or read book An Introduction to Computer Security written by Barbara Guttman and published by DIANE Publishing. This book was released on 1995 with total page 289 pages. Available in PDF, EPUB and Kindle. Book excerpt: Covers: elements of computer security; roles and responsibilities; common threats; computer security policy; computer security program and risk management; security and planning in the computer system life cycle; assurance; personnel/user issues; preparing for contingencies and disasters; computer security incident handling; awareness, training, and education; physical and environmental security; identification and authentication; logical access control; audit trails; cryptography; and assessing and mitigating the risks to a hypothetical computer system.
Book Synopsis Strengthening Deep Neural Networks by : Katy Warr
Download or read book Strengthening Deep Neural Networks written by Katy Warr and published by "O'Reilly Media, Inc.". This book was released on 2019-07-03 with total page 233 pages. Available in PDF, EPUB and Kindle. Book excerpt: As deep neural networks (DNNs) become increasingly common in real-world applications, the potential to deliberately "fool" them with data that wouldn’t trick a human presents a new attack vector. This practical book examines real-world scenarios where DNNs—the algorithms intrinsic to much of AI—are used daily to process image, audio, and video data. Author Katy Warr considers attack motivations, the risks posed by this adversarial input, and methods for increasing AI robustness to these attacks. If you’re a data scientist developing DNN algorithms, a security architect interested in how to make AI systems more resilient to attack, or someone fascinated by the differences between artificial and biological perception, this book is for you. Delve into DNNs and discover how they could be tricked by adversarial input Investigate methods used to generate adversarial input capable of fooling DNNs Explore real-world scenarios and model the adversarial threat Evaluate neural network robustness; learn methods to increase resilience of AI systems to adversarial data Examine some ways in which AI might become better at mimicking human perception in years to come
Author :National Academies of Sciences, Engineering, and Medicine Publisher :National Academies Press ISBN 13 :0309496098 Total Pages :83 pages Book Rating :4.3/5 (94 download)
Book Synopsis Robust Machine Learning Algorithms and Systems for Detection and Mitigation of Adversarial Attacks and Anomalies by : National Academies of Sciences, Engineering, and Medicine
Download or read book Robust Machine Learning Algorithms and Systems for Detection and Mitigation of Adversarial Attacks and Anomalies written by National Academies of Sciences, Engineering, and Medicine and published by National Academies Press. This book was released on 2019-08-22 with total page 83 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Intelligence Community Studies Board (ICSB) of the National Academies of Sciences, Engineering, and Medicine convened a workshop on December 11â€"12, 2018, in Berkeley, California, to discuss robust machine learning algorithms and systems for the detection and mitigation of adversarial attacks and anomalies. This publication summarizes the presentations and discussions from the workshop.
Book Synopsis Algorithms and Architectures for Parallel Processing by : Meikang Qiu
Download or read book Algorithms and Architectures for Parallel Processing written by Meikang Qiu and published by Springer Nature. This book was released on 2020-09-29 with total page 722 pages. Available in PDF, EPUB and Kindle. Book excerpt: This three-volume set LNCS 12452, 12453, and 12454 constitutes the proceedings of the 20th International Conference on Algorithms and Architectures for Parallel Processing, ICA3PP 2020, in New York City, NY, USA, in October 2020. The total of 142 full papers and 5 short papers included in this proceedings volumes was carefully reviewed and selected from 495 submissions. ICA3PP is covering the many dimensions of parallel algorithms and architectures, encompassing fundamental theoretical approaches, practical experimental projects, and commercial components and systems. As applications of computing systems have permeated in every aspects of daily life, the power of computing system has become increasingly critical. This conference provides a forum for academics and practitioners from countries around the world to exchange ideas for improving the efficiency, performance, reliability, security and interoperability of computing systems and applications. ICA3PP 2020 focus on two broad areas of parallel and distributed computing, i.e. architectures, algorithms and networks, and systems and applications.
Book Synopsis Computer Vision – ECCV 2020 by : Andrea Vedaldi
Download or read book Computer Vision – ECCV 2020 written by Andrea Vedaldi and published by Springer Nature. This book was released on 2020-11-12 with total page 830 pages. Available in PDF, EPUB and Kindle. Book excerpt: The 30-volume set, comprising the LNCS books 12346 until 12375, constitutes the refereed proceedings of the 16th European Conference on Computer Vision, ECCV 2020, which was planned to be held in Glasgow, UK, during August 23-28, 2020. The conference was held virtually due to the COVID-19 pandemic. The 1360 revised papers presented in these proceedings were carefully reviewed and selected from a total of 5025 submissions. The papers deal with topics such as computer vision; machine learning; deep neural networks; reinforcement learning; object recognition; image classification; image processing; object detection; semantic segmentation; human pose estimation; 3d reconstruction; stereo vision; computational photography; neural networks; image coding; image reconstruction; object recognition; motion estimation.
Book Synopsis Perturbations, Optimization, and Statistics by : Tamir Hazan
Download or read book Perturbations, Optimization, and Statistics written by Tamir Hazan and published by MIT Press. This book was released on 2017-09-22 with total page 412 pages. Available in PDF, EPUB and Kindle. Book excerpt: A description of perturbation-based methods developed in machine learning to augment novel optimization methods with strong statistical guarantees. In nearly all machine learning, decisions must be made given current knowledge. Surprisingly, making what is believed to be the best decision is not always the best strategy, even when learning in a supervised learning setting. An emerging body of work on learning under different rules applies perturbations to decision and learning procedures. These methods provide simple and highly efficient learning rules with improved theoretical guarantees. This book describes perturbation-based methods developed in machine learning to augment novel optimization methods with strong statistical guarantees, offering readers a state-of-the-art overview. Chapters address recent modeling ideas that have arisen within the perturbations framework, including Perturb & MAP, herding, and the use of neural networks to map generic noise to distribution over highly structured data. They describe new learning procedures for perturbation models, including an improved EM algorithm and a learning algorithm that aims to match moments of model samples to moments of data. They discuss understanding the relation of perturbation models to their traditional counterparts, with one chapter showing that the perturbations viewpoint can lead to new algorithms in the traditional setting. And they consider perturbation-based regularization in neural networks, offering a more complete understanding of dropout and studying perturbations in the context of deep neural networks.
Book Synopsis Machine Learning and Knowledge Discovery in Databases by : Peggy Cellier
Download or read book Machine Learning and Knowledge Discovery in Databases written by Peggy Cellier and published by Springer Nature. This book was released on 2020-03-27 with total page 688 pages. Available in PDF, EPUB and Kindle. Book excerpt: This two-volume set constitutes the refereed proceedings of the workshops which complemented the 19th Joint European Conference on Machine Learning and Knowledge Discovery in Databases, ECML PKDD, held in Würzburg, Germany, in September 2019. The 70 full papers and 46 short papers presented in the two-volume set were carefully reviewed and selected from 200 submissions. The two volumes (CCIS 1167 and CCIS 1168) present the papers that have been accepted for the following workshops: Workshop on Automating Data Science, ADS 2019; Workshop on Advances in Interpretable Machine Learning and Artificial Intelligence and eXplainable Knowledge Discovery in Data Mining, AIMLAI-XKDD 2019; Workshop on Decentralized Machine Learning at the Edge, DMLE 2019; Workshop on Advances in Managing and Mining Large Evolving Graphs, LEG 2019; Workshop on Data and Machine Learning Advances with Multiple Views; Workshop on New Trends in Representation Learning with Knowledge Graphs; Workshop on Data Science for Social Good, SoGood 2019; Workshop on Knowledge Discovery and User Modelling for Smart Cities, UMCIT 2019; Workshop on Data Integration and Applications Workshop, DINA 2019; Workshop on Machine Learning for Cybersecurity, MLCS 2019; Workshop on Sports Analytics: Machine Learning and Data Mining for Sports Analytics, MLSA 2019; Workshop on Categorising Different Types of Online Harassment Languages in Social Media; Workshop on IoT Stream for Data Driven Predictive Maintenance, IoTStream 2019; Workshop on Machine Learning and Music, MML 2019; Workshop on Large-Scale Biomedical Semantic Indexing and Question Answering, BioASQ 2019. The chapter "Supervised Human-guided Data Exploration" is published open access under a Creative Commons Attribution 4.0 International license (CC BY).
Download or read book Ccs '17 written by Bhavani Thuraisingham and published by . This book was released on 2017-10-30 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: CCS '17: 2017 ACM SIGSAC Conference on Computer and Communications Security Oct 30, 2017-Nov 03, 2017 Dallas, USA. You can view more information about this proceeding and all of ACM�s other published conference proceedings from the ACM Digital Library: http://www.acm.org/dl.
Book Synopsis 2020 IEEE 18th International Conference on Industrial Informatics (INDIN) by : IEEE Staff
Download or read book 2020 IEEE 18th International Conference on Industrial Informatics (INDIN) written by IEEE Staff and published by . This book was released on 2020-07-20 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: INDIN focuses on recent developments, deployments, technology trends, and research results in Industrial Informatics related fields from both industry and academia
Download or read book ECAI 2023 written by K. Gal and published by IOS Press. This book was released on 2023-10-18 with total page 3328 pages. Available in PDF, EPUB and Kindle. Book excerpt: Artificial intelligence, or AI, now affects the day-to-day life of almost everyone on the planet, and continues to be a perennial hot topic in the news. This book presents the proceedings of ECAI 2023, the 26th European Conference on Artificial Intelligence, and of PAIS 2023, the 12th Conference on Prestigious Applications of Intelligent Systems, held from 30 September to 4 October 2023 and on 3 October 2023 respectively in Kraków, Poland. Since 1974, ECAI has been the premier venue for presenting AI research in Europe, and this annual conference has become the place for researchers and practitioners of AI to discuss the latest trends and challenges in all subfields of AI, and to demonstrate innovative applications and uses of advanced AI technology. ECAI 2023 received 1896 submissions – a record number – of which 1691 were retained for review, ultimately resulting in an acceptance rate of 23%. The 390 papers included here, cover topics including machine learning, natural language processing, multi agent systems, and vision and knowledge representation and reasoning. PAIS 2023 received 17 submissions, of which 10 were accepted after a rigorous review process. Those 10 papers cover topics ranging from fostering better working environments, behavior modeling and citizen science to large language models and neuro-symbolic applications, and are also included here. Presenting a comprehensive overview of current research and developments in AI, the book will be of interest to all those working in the field.
Book Synopsis Attacks, Defenses and Testing for Deep Learning by : Jinyin Chen
Download or read book Attacks, Defenses and Testing for Deep Learning written by Jinyin Chen and published by Springer Nature. This book was released on with total page 413 pages. Available in PDF, EPUB and Kindle. Book excerpt: