Neural Systems for Control

Download Neural Systems for Control PDF Online Free

Author :
Publisher : Elsevier
ISBN 13 : 0080537391
Total Pages : 375 pages
Book Rating : 4.0/5 (85 download)

DOWNLOAD NOW!


Book Synopsis Neural Systems for Control by : Omid Omidvar

Download or read book Neural Systems for Control written by Omid Omidvar and published by Elsevier. This book was released on 1997-02-24 with total page 375 pages. Available in PDF, EPUB and Kindle. Book excerpt: Control problems offer an industrially important application and a guide to understanding control systems for those working in Neural Networks. Neural Systems for Control represents the most up-to-date developments in the rapidly growing aplication area of neural networks and focuses on research in natural and artifical neural systems directly applicable to control or making use of modern control theory. The book covers such important new developments in control systems such as intelligent sensors in semiconductor wafer manufacturing; the relation between muscles and cerebral neurons in speech recognition; online compensation of reconfigurable control for spacecraft aircraft and other systems; applications to rolling mills, robotics and process control; the usage of past output data to identify nonlinear systems by neural networks; neural approximate optimal control; model-free nonlinear control; and neural control based on a regulation of physiological investigation/blood pressure control. All researchers and students dealing with control systems will find the fascinating Neural Systems for Control of immense interest and assistance. - Focuses on research in natural and artifical neural systems directly applicable to contol or making use of modern control theory - Represents the most up-to-date developments in this rapidly growing application area of neural networks - Takes a new and novel approach to system identification and synthesis

Neural Networks for Control

Download Neural Networks for Control PDF Online Free

Author :
Publisher : MIT Press
ISBN 13 : 9780262631617
Total Pages : 548 pages
Book Rating : 4.6/5 (316 download)

DOWNLOAD NOW!


Book Synopsis Neural Networks for Control by : W. Thomas Miller

Download or read book Neural Networks for Control written by W. Thomas Miller and published by MIT Press. This book was released on 1995 with total page 548 pages. Available in PDF, EPUB and Kindle. Book excerpt: Neural Networks for Control brings together examples of all the most important paradigms for the application of neural networks to robotics and control. Primarily concerned with engineering problems and approaches to their solution through neurocomputing systems, the book is divided into three sections: general principles, motion control, and applications domains (with evaluations of the possible applications by experts in the applications areas.) Special emphasis is placed on designs based on optimization or reinforcement, which will become increasingly important as researchers address more complex engineering challenges or real biological-control problems.A Bradford Book. Neural Network Modeling and Connectionism series

Adaptive Control with Recurrent High-order Neural Networks

Download Adaptive Control with Recurrent High-order Neural Networks PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1447107853
Total Pages : 203 pages
Book Rating : 4.4/5 (471 download)

DOWNLOAD NOW!


Book Synopsis Adaptive Control with Recurrent High-order Neural Networks by : George A. Rovithakis

Download or read book Adaptive Control with Recurrent High-order Neural Networks written by George A. Rovithakis and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 203 pages. Available in PDF, EPUB and Kindle. Book excerpt: The series Advances in Industrial Control aims to report and encourage technology transfer in control engineering. The rapid development of control technology has an impact on all areas of the control discipline. New theory, new controllers, actuators, sensors, new industrial processes, computer methods, new applications, new philosophies ... , new challenges. Much of this development work resides in industrial reports, feasibility study papers and the reports of advanced collaborative projects. The series offers an opportunity for researchers to present an extended exposition of such new work in all aspects of industrial control for wider and rapid dissemination. Neural networks is one of those areas where an initial burst of enthusiasm and optimism leads to an explosion of papers in the journals and many presentations at conferences but it is only in the last decade that significant theoretical work on stability, convergence and robustness for the use of neural networks in control systems has been tackled. George Rovithakis and Manolis Christodoulou have been interested in these theoretical problems and in the practical aspects of neural network applications to industrial problems. This very welcome addition to the Advances in Industrial Control series provides a succinct report of their research. The neural network model at the core of their work is the Recurrent High Order Neural Network (RHONN) and a complete theoretical and simulation development is presented. Different readers will find different aspects of the development of interest. The last chapter of the monograph discusses the problem of manufacturing or production process scheduling.

Stable Adaptive Neural Network Control

Download Stable Adaptive Neural Network Control PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1475765770
Total Pages : 296 pages
Book Rating : 4.4/5 (757 download)

DOWNLOAD NOW!


Book Synopsis Stable Adaptive Neural Network Control by : S.S. Ge

Download or read book Stable Adaptive Neural Network Control written by S.S. Ge and published by Springer Science & Business Media. This book was released on 2013-03-09 with total page 296 pages. Available in PDF, EPUB and Kindle. Book excerpt: Recent years have seen a rapid development of neural network control tech niques and their successful applications. Numerous simulation studies and actual industrial implementations show that artificial neural network is a good candidate for function approximation and control system design in solving the control problems of complex nonlinear systems in the presence of different kinds of uncertainties. Many control approaches/methods, reporting inventions and control applications within the fields of adaptive control, neural control and fuzzy systems, have been published in various books, journals and conference proceedings. In spite of these remarkable advances in neural control field, due to the complexity of nonlinear systems, the present research on adaptive neural control is still focused on the development of fundamental methodologies. From a theoretical viewpoint, there is, in general, lack of a firmly mathematical basis in stability, robustness, and performance analysis of neural network adaptive control systems. This book is motivated by the need for systematic design approaches for stable adaptive control using approximation-based techniques. The main objec tives of the book are to develop stable adaptive neural control strategies, and to perform transient performance analysis of the resulted neural control systems analytically. Other linear-in-the-parameter function approximators can replace the linear-in-the-parameter neural networks in the controllers presented in the book without any difficulty, which include polynomials, splines, fuzzy systems, wavelet networks, among others. Stability is one of the most important issues being concerned if an adaptive neural network controller is to be used in practical applications.

Neural Networks in Robotics

Download Neural Networks in Robotics PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 9780792392682
Total Pages : 582 pages
Book Rating : 4.3/5 (926 download)

DOWNLOAD NOW!


Book Synopsis Neural Networks in Robotics by : George Bekey

Download or read book Neural Networks in Robotics written by George Bekey and published by Springer Science & Business Media. This book was released on 1992-11-30 with total page 582 pages. Available in PDF, EPUB and Kindle. Book excerpt: Neural Networks in Robotics is the first book to present an integrated view of both the application of artificial neural networks to robot control and the neuromuscular models from which robots were created. The behavior of biological systems provides both the inspiration and the challenge for robotics. The goal is to build robots which can emulate the ability of living organisms to integrate perceptual inputs smoothly with motor responses, even in the presence of novel stimuli and changes in the environment. The ability of living systems to learn and to adapt provides the standard against which robotic systems are judged. In order to emulate these abilities, a number of investigators have attempted to create robot controllers which are modelled on known processes in the brain and musculo-skeletal system. Several of these models are described in this book. On the other hand, connectionist (artificial neural network) formulations are attractive for the computation of inverse kinematics and dynamics of robots, because they can be trained for this purpose without explicit programming. Some of the computational advantages and problems of this approach are also presented. For any serious student of robotics, Neural Networks in Robotics provides an indispensable reference to the work of major researchers in the field. Similarly, since robotics is an outstanding application area for artificial neural networks, Neural Networks in Robotics is equally important to workers in connectionism and to students for sensormonitor control in living systems.

Neural Networks for Modelling and Control of Dynamic Systems

Download Neural Networks for Modelling and Control of Dynamic Systems PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 246 pages
Book Rating : 4.:/5 (876 download)

DOWNLOAD NOW!


Book Synopsis Neural Networks for Modelling and Control of Dynamic Systems by : M. Norgaard

Download or read book Neural Networks for Modelling and Control of Dynamic Systems written by M. Norgaard and published by . This book was released on 2003 with total page 246 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Radial Basis Function (RBF) Neural Network Control for Mechanical Systems

Download Radial Basis Function (RBF) Neural Network Control for Mechanical Systems PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 3642348165
Total Pages : 375 pages
Book Rating : 4.6/5 (423 download)

DOWNLOAD NOW!


Book Synopsis Radial Basis Function (RBF) Neural Network Control for Mechanical Systems by : Jinkun Liu

Download or read book Radial Basis Function (RBF) Neural Network Control for Mechanical Systems written by Jinkun Liu and published by Springer Science & Business Media. This book was released on 2013-01-26 with total page 375 pages. Available in PDF, EPUB and Kindle. Book excerpt: Radial Basis Function (RBF) Neural Network Control for Mechanical Systems is motivated by the need for systematic design approaches to stable adaptive control system design using neural network approximation-based techniques. The main objectives of the book are to introduce the concrete design methods and MATLAB simulation of stable adaptive RBF neural control strategies. In this book, a broad range of implementable neural network control design methods for mechanical systems are presented, such as robot manipulators, inverted pendulums, single link flexible joint robots, motors, etc. Advanced neural network controller design methods and their stability analysis are explored. The book provides readers with the fundamentals of neural network control system design. This book is intended for the researchers in the fields of neural adaptive control, mechanical systems, Matlab simulation, engineering design, robotics and automation. Jinkun Liu is a professor at Beijing University of Aeronautics and Astronautics.

Neural Network Applications in Control

Download Neural Network Applications in Control PDF Online Free

Author :
Publisher : IET
ISBN 13 : 9780852968529
Total Pages : 320 pages
Book Rating : 4.9/5 (685 download)

DOWNLOAD NOW!


Book Synopsis Neural Network Applications in Control by : George William Irwin

Download or read book Neural Network Applications in Control written by George William Irwin and published by IET. This book was released on 1995 with total page 320 pages. Available in PDF, EPUB and Kindle. Book excerpt: The aim is to present an introduction to, and an overview of, the present state of neural network research and development, with an emphasis on control systems application studies. The book is useful to a range of levels of reader. The earlier chapters introduce the more popular networks and the fundamental control principles, these are followed by a series of application studies, most of which are industrially based, and the book concludes with a consideration of some recent research.

Artificial Intelligence in the Age of Neural Networks and Brain Computing

Download Artificial Intelligence in the Age of Neural Networks and Brain Computing PDF Online Free

Author :
Publisher : Academic Press
ISBN 13 : 0323958168
Total Pages : 398 pages
Book Rating : 4.3/5 (239 download)

DOWNLOAD NOW!


Book Synopsis Artificial Intelligence in the Age of Neural Networks and Brain Computing by : Robert Kozma

Download or read book Artificial Intelligence in the Age of Neural Networks and Brain Computing written by Robert Kozma and published by Academic Press. This book was released on 2023-10-11 with total page 398 pages. Available in PDF, EPUB and Kindle. Book excerpt: Artificial Intelligence in the Age of Neural Networks and Brain Computing, Second Edition demonstrates that present disruptive implications and applications of AI is a development of the unique attributes of neural networks, mainly machine learning, distributed architectures, massive parallel processing, black-box inference, intrinsic nonlinearity, and smart autonomous search engines. The book covers the major basic ideas of "brain-like computing" behind AI, provides a framework to deep learning, and launches novel and intriguing paradigms as possible future alternatives. The present success of AI-based commercial products proposed by top industry leaders, such as Google, IBM, Microsoft, Intel, and Amazon, can be interpreted using the perspective presented in this book by viewing the co-existence of a successful synergism among what is referred to as computational intelligence, natural intelligence, brain computing, and neural engineering. The new edition has been updated to include major new advances in the field, including many new chapters. - Developed from the 30th anniversary of the International Neural Network Society (INNS) and the 2017 International Joint Conference on Neural Networks (IJCNN - Authored by top experts, global field pioneers, and researchers working on cutting-edge applications in signal processing, speech recognition, games, adaptive control and decision-making - Edited by high-level academics and researchers in intelligent systems and neural networks - Includes all new chapters, including topics such as Frontiers in Recurrent Neural Network Research; Big Science, Team Science, Open Science for Neuroscience; A Model-Based Approach for Bridging Scales of Cortical Activity; A Cognitive Architecture for Object Recognition in Video; How Brain Architecture Leads to Abstract Thought; Deep Learning-Based Speech Separation and Advances in AI, Neural Networks

Advances in Neural Networks – ISNN 2020

Download Advances in Neural Networks – ISNN 2020 PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3030642216
Total Pages : 284 pages
Book Rating : 4.0/5 (36 download)

DOWNLOAD NOW!


Book Synopsis Advances in Neural Networks – ISNN 2020 by : Min Han

Download or read book Advances in Neural Networks – ISNN 2020 written by Min Han and published by Springer Nature. This book was released on 2020-11-28 with total page 284 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume LNCS 12557 constitutes the refereed proceedings of the 17th International Symposium on Neural Networks, ISNN 2020, held in Cairo, Egypt, in December 2020. The 24 papers presented in the two volumes were carefully reviewed and selected from 39 submissions. The papers were organized in topical sections named: optimization algorithms; neurodynamics, complex systems, and chaos; supervised/unsupervised/reinforcement learning/deep learning; models, methods and algorithms; and signal, image and video processing.

Nonlinear Identification and Control

Download Nonlinear Identification and Control PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1447103459
Total Pages : 224 pages
Book Rating : 4.4/5 (471 download)

DOWNLOAD NOW!


Book Synopsis Nonlinear Identification and Control by : G.P. Liu

Download or read book Nonlinear Identification and Control written by G.P. Liu and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 224 pages. Available in PDF, EPUB and Kindle. Book excerpt: The purpose of this monograph is to give the broad aspects of nonlinear identification and control using neural networks. It uses a number of simulated and industrial examples throughout, to demonstrate the operation of nonlinear identification and control techniques using neural networks.

Discrete-Time Recurrent Neural Control

Download Discrete-Time Recurrent Neural Control PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1351377426
Total Pages : 205 pages
Book Rating : 4.3/5 (513 download)

DOWNLOAD NOW!


Book Synopsis Discrete-Time Recurrent Neural Control by : Edgar N. Sanchez

Download or read book Discrete-Time Recurrent Neural Control written by Edgar N. Sanchez and published by CRC Press. This book was released on 2018-09-03 with total page 205 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book presents recent advances in the theory of neural control for discrete-time nonlinear systems with multiple inputs and multiple outputs. The simulation results that appear in each chapter include rigorous mathematical analyses, based on the Lyapunov approach, to establish its properties. The book contains two sections: the first focuses on the analyses of control techniques; the second is dedicated to illustrating results of real-time applications. It also provides solutions for the output trajectory tracking problem of unknown nonlinear systems based on sliding modes and inverse optimal control scheme. "This book on Discrete-time Recurrent Neural Control is unique in the literature, with new knowledge and information about the new technique of recurrent neural control especially for discrete-time systems. The book is well organized and clearly presented. It will be welcome by a wide range of researchers in science and engineering, especially graduate students and junior researchers who want to learn the new notion of recurrent neural control. I believe it will have a good market. It is an excellent book after all." — Guanrong Chen, City University of Hong Kong "This book includes very relevant topics, about neural control. In these days, Artificial Neural Networks have been recovering their relevance and well-stablished importance, this due to its great capacity to process big amounts of data. Artificial Neural Networks development always is related to technological advancements; therefore, it is not a surprise that now we are being witnesses of this new era in Artificial Neural Networks, however most of the developments in this research area only focuses on applicability of the proposed schemes. However, Edgar N. Sanchez author of this book does not lose focus and include both important applications as well as a deep theoretical analysis of Artificial Neural Networks to control discrete-time nonlinear systems. It is important to remark that first, the considered Artificial Neural Networks are development in discrete-time this simplify its implementation in real-time; secondly, the proposed applications ranging from modelling of unknown discrete-time on linear systems to control electrical machines with an emphasize to renewable energy systems. However, its applications are not limited to these kind of systems, due to their theoretical foundation it can be applicable to a large class of nonlinear systems. All of these is supported by the solid research done by the author." — Alma Y. Alanis, University of Guadalajara, Mexico "This book discusses in detail; how neural networks can be used for optimal as well as robust control design. Design of neural network controllers for real time applications such as induction motors, boost converters, inverted pendulum and doubly fed induction generators has also been carried out which gives the book an edge over other similar titles. This book will be an asset for the novice to the experienced ones." — Rajesh Joseph Abraham, Indian Institute of Space Science & Technology, Thiruvananthapuram, India

Advanced Models of Neural Networks

Download Advanced Models of Neural Networks PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3662437643
Total Pages : 296 pages
Book Rating : 4.6/5 (624 download)

DOWNLOAD NOW!


Book Synopsis Advanced Models of Neural Networks by : Gerasimos G. Rigatos

Download or read book Advanced Models of Neural Networks written by Gerasimos G. Rigatos and published by Springer. This book was released on 2014-08-27 with total page 296 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a complete study on neural structures exhibiting nonlinear and stochastic dynamics, elaborating on neural dynamics by introducing advanced models of neural networks. It overviews the main findings in the modelling of neural dynamics in terms of electrical circuits and examines their stability properties with the use of dynamical systems theory. It is suitable for researchers and postgraduate students engaged with neural networks and dynamical systems theory.

11th World Conference “Intelligent System for Industrial Automation” (WCIS-2020)

Download 11th World Conference “Intelligent System for Industrial Automation” (WCIS-2020) PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3030680045
Total Pages : 615 pages
Book Rating : 4.0/5 (36 download)

DOWNLOAD NOW!


Book Synopsis 11th World Conference “Intelligent System for Industrial Automation” (WCIS-2020) by : Rafik Aziz Aliev

Download or read book 11th World Conference “Intelligent System for Industrial Automation” (WCIS-2020) written by Rafik Aziz Aliev and published by Springer Nature. This book was released on 2021-03-16 with total page 615 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents the proceedings of the 11th Scientific Conference “Intelligent systems for industrial automation,” WCIS-2020, held in Tashkent, Uzbekistan, on November 26–28, 2020. It includes contributions from diverse areas of intelligent industrial systems design as hybrid control systems, intelligent information systems, decision making under imperfect information and others. The topics of the papers include intelligent control systems, pattern recognition, Industry 4.0, information security, neural computing, fuzzy and evolutionary computation, decision making and support systems, modeling of chemical technological processes and others.

Applications of Neural Adaptive Control Technology

Download Applications of Neural Adaptive Control Technology PDF Online Free

Author :
Publisher : World Scientific
ISBN 13 : 9789810231514
Total Pages : 328 pages
Book Rating : 4.2/5 (315 download)

DOWNLOAD NOW!


Book Synopsis Applications of Neural Adaptive Control Technology by : Jens Kalkkuhl

Download or read book Applications of Neural Adaptive Control Technology written by Jens Kalkkuhl and published by World Scientific. This book was released on 1997 with total page 328 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents the results of the second workshop on Neural Adaptive Control Technology, NACT II, held on September 9-10, 1996, in Berlin. The workshop was organised in connection with a three-year European-Union-funded Basic Research Project in the ESPRIT framework, called NACT, a collaboration between Daimler-Benz (Germany) and the University of Glasgow (Scotland).The NACT project, which began on 1 April 1994, is a study of the fundamental properties of neural-network-based adaptive control systems. Where possible, links with traditional adaptive control systems are exploited. A major aim is to develop a systematic engineering procedure for designing neural controllers for nonlinear dynamic systems. The techniques developed are being evaluated on concrete industrial problems from within the Daimler-Benz group of companies.The aim of the workshop was to bring together selected invited specialists in the fields of adaptive control, nonlinear systems and neural networks. The first workshop (NACT I) took place in Glasgow in May 1995 and was mainly devoted to theoretical issues of neural adaptive control. Besides monitoring further development of theory, the NACT II workshop was focused on industrial applications and software tools. This context dictated the focus of the book and guided the editors in the choice of the papers and their subsequent reshaping into substantive book chapters. Thus, with the project having progressed into its applications stage, emphasis is put on the transfer of theory of neural adaptive engineering into industrial practice. The contributors are therefore both renowned academics and practitioners from major industrial users of neurocontrol.

Neural Network Control

Download Neural Network Control PDF Online Free

Author :
Publisher : Research Studies Press Limited
ISBN 13 :
Total Pages : 424 pages
Book Rating : 4.3/5 (91 download)

DOWNLOAD NOW!


Book Synopsis Neural Network Control by : Sunan Huang

Download or read book Neural Network Control written by Sunan Huang and published by Research Studies Press Limited. This book was released on 2004 with total page 424 pages. Available in PDF, EPUB and Kindle. Book excerpt: "While the book is written to serve as an advanced control reference on NN control for researchers, postgraduates and senior undergraduates, it should be equally useful to those industrial practitioners who are keen to explore the use of advanced neural network control in real problems. The prerequisite for gaining maximum benefit from this book is a basic knowledge of control systems, such as that imparted by a first undergraduate course on control systems engineering."--Jacket.

Advances in Neural Networks--ISNN 2004

Download Advances in Neural Networks--ISNN 2004 PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 2062 pages
Book Rating : 4.:/5 (2 download)

DOWNLOAD NOW!


Book Synopsis Advances in Neural Networks--ISNN 2004 by :

Download or read book Advances in Neural Networks--ISNN 2004 written by and published by . This book was released on 2004 with total page 2062 pages. Available in PDF, EPUB and Kindle. Book excerpt: