Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Advances In Neural Networks And Applications
Download Advances In Neural Networks And Applications full books in PDF, epub, and Kindle. Read online Advances In Neural Networks And Applications ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis Advances in Neural Networks – ISNN 2020 by : Min Han
Download or read book Advances in Neural Networks – ISNN 2020 written by Min Han and published by Springer Nature. This book was released on 2020-11-28 with total page 284 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume LNCS 12557 constitutes the refereed proceedings of the 17th International Symposium on Neural Networks, ISNN 2020, held in Cairo, Egypt, in December 2020. The 24 papers presented in the two volumes were carefully reviewed and selected from 39 submissions. The papers were organized in topical sections named: optimization algorithms; neurodynamics, complex systems, and chaos; supervised/unsupervised/reinforcement learning/deep learning; models, methods and algorithms; and signal, image and video processing.
Book Synopsis Advances in Neural Network Research and Applications by : Zhigang Zeng
Download or read book Advances in Neural Network Research and Applications written by Zhigang Zeng and published by Springer Science & Business Media. This book was released on 2010-05-10 with total page 921 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is a part of the Proceedings of the Seventh International Symposium on Neural Networks (ISNN 2010), held on June 6-9, 2010 in Shanghai, China. Over the past few years, ISNN has matured into a well-established premier international symposium on neural networks and related fields, with a successful sequence of ISNN series in Dalian (2004), Chongqing (2005), Chengdu (2006), Nanjing (2007), Beijing (2008), and Wuhan (2009). Following the tradition of ISNN series, ISNN 2010 provided a high-level international forum for scientists, engineers, and educators to present the state-of-the-art research in neural networks and related fields, and also discuss the major opportunities and challenges of future neural network research. Over the past decades, the neural network community has witnessed significant breakthroughs and developments from all aspects of neural network research, including theoretical foundations, architectures, and network organizations, modeling and simulation, empirical studies, as well as a wide range of applications across different domains. The recent developments of science and technology, including neuroscience, computer science, cognitive science, nano-technologies and engineering design, among others, has provided significant new understandings and technological solutions to move the neural network research toward the development of complex, large scale, and networked brain-like intelligent systems. This long-term goals can only be achieved with the continuous efforts from the community to seriously investigate various issues on neural networks and related topics.
Book Synopsis Recent Advances of Neural Network Models and Applications by : Simone Bassis
Download or read book Recent Advances of Neural Network Models and Applications written by Simone Bassis and published by Springer. This book was released on 2014-01-10 with total page 446 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume collects a selection of contributions which has been presented at the 23rd Italian Workshop on Neural Networks, the yearly meeting of the Italian Society for Neural Networks (SIREN). The conference was held in Vietri sul Mare, Salerno, Italy during May 23-24, 2013. The annual meeting of SIREN is sponsored by International Neural Network Society (INNS), European Neural Network Society (ENNS) and IEEE Computational Intelligence Society (CIS). The book – as well as the workshop- is organized in two main components, a special session and a group of regular sessions featuring different aspects and point of views of artificial neural networks, artificial and natural intelligence, as well as psychological and cognitive theories for modeling human behaviors and human machine interactions, including Information Communication applications of compelling interest.
Book Synopsis Artificial Neural Networks by : Joao Luis Garcia Rosa
Download or read book Artificial Neural Networks written by Joao Luis Garcia Rosa and published by BoD – Books on Demand. This book was released on 2016-10-19 with total page 416 pages. Available in PDF, EPUB and Kindle. Book excerpt: The idea of simulating the brain was the goal of many pioneering works in Artificial Intelligence. The brain has been seen as a neural network, or a set of nodes, or neurons, connected by communication lines. Currently, there has been increasing interest in the use of neural network models. This book contains chapters on basic concepts of artificial neural networks, recent connectionist architectures and several successful applications in various fields of knowledge, from assisted speech therapy to remote sensing of hydrological parameters, from fabric defect classification to application in civil engineering. This is a current book on Artificial Neural Networks and Applications, bringing recent advances in the area to the reader interested in this always-evolving machine learning technique.
Book Synopsis State of the Art in Neural Networks and Their Applications by : Ayman S. El-Baz
Download or read book State of the Art in Neural Networks and Their Applications written by Ayman S. El-Baz and published by Academic Press. This book was released on 2021-07-21 with total page 326 pages. Available in PDF, EPUB and Kindle. Book excerpt: State of the Art in Neural Networks and Their Applications presents the latest advances in artificial neural networks and their applications across a wide range of clinical diagnoses. Advances in the role of machine learning, artificial intelligence, deep learning, cognitive image processing and suitable data analytics useful for clinical diagnosis and research applications are covered, including relevant case studies. The application of Neural Network, Artificial Intelligence, and Machine Learning methods in biomedical image analysis have resulted in the development of computer-aided diagnostic (CAD) systems that aim towards the automatic early detection of several severe diseases. State of the Art in Neural Networks and Their Applications is presented in two volumes. Volume 1 covers the state-of-the-art deep learning approaches for the detection of renal, retinal, breast, skin, and dental abnormalities and more. - Includes applications of neural networks, AI, machine learning, and deep learning techniques to a variety of imaging technologies - Provides in-depth technical coverage of computer-aided diagnosis (CAD), with coverage of computer-aided classification, Unified Deep Learning Frameworks, mammography, fundus imaging, optical coherence tomography, cryo-electron tomography, 3D MRI, CT, and more - Covers deep learning for several medical conditions including renal, retinal, breast, skin, and dental abnormalities, Medical Image Analysis, as well as detection, segmentation, and classification via AI
Book Synopsis Applications of Artificial Neural Networks for Nonlinear Data by : Patel, Hiral Ashil
Download or read book Applications of Artificial Neural Networks for Nonlinear Data written by Patel, Hiral Ashil and published by IGI Global. This book was released on 2020-09-25 with total page 315 pages. Available in PDF, EPUB and Kindle. Book excerpt: Processing information and analyzing data efficiently and effectively is crucial for any company that wishes to stay competitive in its respective market. Nonlinear data presents new challenges to organizations, however, due to its complexity and unpredictability. The only technology that can properly handle this form of data is artificial neural networks. These modeling systems present a high level of benefits in analyzing complex data in a proficient manner, yet considerable research on the specific applications of these intelligent components is significantly deficient. Applications of Artificial Neural Networks for Nonlinear Data is a collection of innovative research on the contemporary nature of artificial neural networks and their specific implementations within data analysis. While highlighting topics including propagation functions, optimization techniques, and learning methodologies, this book is ideally designed for researchers, statisticians, academicians, developers, scientists, practitioners, students, and educators seeking current research on the use of artificial neural networks in diagnosing and solving nonparametric problems.
Author :Management Association, Information Resources Publisher :IGI Global ISBN 13 :1668424096 Total Pages :1575 pages Book Rating :4.6/5 (684 download)
Book Synopsis Research Anthology on Artificial Neural Network Applications by : Management Association, Information Resources
Download or read book Research Anthology on Artificial Neural Network Applications written by Management Association, Information Resources and published by IGI Global. This book was released on 2021-07-16 with total page 1575 pages. Available in PDF, EPUB and Kindle. Book excerpt: Artificial neural networks (ANNs) present many benefits in analyzing complex data in a proficient manner. As an effective and efficient problem-solving method, ANNs are incredibly useful in many different fields. From education to medicine and banking to engineering, artificial neural networks are a growing phenomenon as more realize the plethora of uses and benefits they provide. Due to their complexity, it is vital for researchers to understand ANN capabilities in various fields. The Research Anthology on Artificial Neural Network Applications covers critical topics related to artificial neural networks and their multitude of applications in a number of diverse areas including medicine, finance, operations research, business, social media, security, and more. Covering everything from the applications and uses of artificial neural networks to deep learning and non-linear problems, this book is ideal for computer scientists, IT specialists, data scientists, technologists, business owners, engineers, government agencies, researchers, academicians, and students, as well as anyone who is interested in learning more about how artificial neural networks can be used across a wide range of fields.
Book Synopsis Advanced Applications for Artificial Neural Networks by : Adel El-Shahat
Download or read book Advanced Applications for Artificial Neural Networks written by Adel El-Shahat and published by BoD – Books on Demand. This book was released on 2018-02-28 with total page 298 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this book, highly qualified multidisciplinary scientists grasp their recent researches motivated by the importance of artificial neural networks. It addresses advanced applications and innovative case studies for the next-generation optical networks based on modulation recognition using artificial neural networks, hardware ANN for gait generation of multi-legged robots, production of high-resolution soil property ANN maps, ANN and dynamic factor models to combine forecasts, ANN parameter recognition of engineering constants in Civil Engineering, ANN electricity consumption and generation forecasting, ANN for advanced process control, ANN breast cancer detection, ANN applications in biofuels, ANN modeling for manufacturing process optimization, spectral interference correction using a large-size spectrometer and ANN-based deep learning, solar radiation ANN prediction using NARX model, and ANN data assimilation for an atmospheric general circulation model.
Book Synopsis Process Neural Networks by : Xingui He
Download or read book Process Neural Networks written by Xingui He and published by Springer Science & Business Media. This book was released on 2010-07-05 with total page 240 pages. Available in PDF, EPUB and Kindle. Book excerpt: For the first time, this book sets forth the concept and model for a process neural network. You’ll discover how a process neural network expands the mapping relationship between the input and output of traditional neural networks and greatly enhances the expression capability of artificial neural networks. Detailed illustrations help you visualize information processing flow and the mapping relationship between inputs and outputs.
Book Synopsis Artificial Intelligence in the Age of Neural Networks and Brain Computing by : Robert Kozma
Download or read book Artificial Intelligence in the Age of Neural Networks and Brain Computing written by Robert Kozma and published by Academic Press. This book was released on 2023-10-11 with total page 398 pages. Available in PDF, EPUB and Kindle. Book excerpt: Artificial Intelligence in the Age of Neural Networks and Brain Computing, Second Edition demonstrates that present disruptive implications and applications of AI is a development of the unique attributes of neural networks, mainly machine learning, distributed architectures, massive parallel processing, black-box inference, intrinsic nonlinearity, and smart autonomous search engines. The book covers the major basic ideas of "brain-like computing" behind AI, provides a framework to deep learning, and launches novel and intriguing paradigms as possible future alternatives. The present success of AI-based commercial products proposed by top industry leaders, such as Google, IBM, Microsoft, Intel, and Amazon, can be interpreted using the perspective presented in this book by viewing the co-existence of a successful synergism among what is referred to as computational intelligence, natural intelligence, brain computing, and neural engineering. The new edition has been updated to include major new advances in the field, including many new chapters. - Developed from the 30th anniversary of the International Neural Network Society (INNS) and the 2017 International Joint Conference on Neural Networks (IJCNN - Authored by top experts, global field pioneers, and researchers working on cutting-edge applications in signal processing, speech recognition, games, adaptive control and decision-making - Edited by high-level academics and researchers in intelligent systems and neural networks - Includes all new chapters, including topics such as Frontiers in Recurrent Neural Network Research; Big Science, Team Science, Open Science for Neuroscience; A Model-Based Approach for Bridging Scales of Cortical Activity; A Cognitive Architecture for Object Recognition in Video; How Brain Architecture Leads to Abstract Thought; Deep Learning-Based Speech Separation and Advances in AI, Neural Networks
Book Synopsis Recurrent Neural Networks by : Larry Medsker
Download or read book Recurrent Neural Networks written by Larry Medsker and published by CRC Press. This book was released on 1999-12-20 with total page 414 pages. Available in PDF, EPUB and Kindle. Book excerpt: With existent uses ranging from motion detection to music synthesis to financial forecasting, recurrent neural networks have generated widespread attention. The tremendous interest in these networks drives Recurrent Neural Networks: Design and Applications, a summary of the design, applications, current research, and challenges of this subfield of artificial neural networks. This overview incorporates every aspect of recurrent neural networks. It outlines the wide variety of complex learning techniques and associated research projects. Each chapter addresses architectures, from fully connected to partially connected, including recurrent multilayer feedforward. It presents problems involving trajectories, control systems, and robotics, as well as RNN use in chaotic systems. The authors also share their expert knowledge of ideas for alternate designs and advances in theoretical aspects. The dynamical behavior of recurrent neural networks is useful for solving problems in science, engineering, and business. This approach will yield huge advances in the coming years. Recurrent Neural Networks illuminates the opportunities and provides you with a broad view of the current events in this rich field.
Book Synopsis Artificial Neural Networks in Real-life Applications by : Juan Ramon Rabunal
Download or read book Artificial Neural Networks in Real-life Applications written by Juan Ramon Rabunal and published by IGI Global. This book was released on 2006-01-01 with total page 395 pages. Available in PDF, EPUB and Kindle. Book excerpt: "This book offers an outlook of the most recent works at the field of the Artificial Neural Networks (ANN), including theoretical developments and applications of systems using intelligent characteristics for adaptability"--Provided by publisher.
Book Synopsis Advances in Memristor Neural Networks by : Calin Ciufudean
Download or read book Advances in Memristor Neural Networks written by Calin Ciufudean and published by BoD – Books on Demand. This book was released on 2018-10-03 with total page 126 pages. Available in PDF, EPUB and Kindle. Book excerpt: Nowadays, scientific research deals with alternative solutions for creating non-traditional computing systems, such as neural network architectures where the stochastic nature and live dynamics of memristive models play a key role. The features of memristors make it possible to direct processing and analysis of both biosystems and systems driven by artificial intelligence, as well as develop plausible physical models of spiking neural networks with self-organization. This book deals with advanced applications illustrating these concepts, and delivers an important contribution for the achievement of the next generation of intelligent hybrid biostructures. Different modeling and simulation tools can deliver an alternative to funding the theoretical approach as well as practical implementation of memristive systems.
Download or read book Neural Networks written by Doug Alexander and published by . This book was released on 2020 with total page 232 pages. Available in PDF, EPUB and Kindle. Book excerpt: "With respect to the ever-increasing developments in artificial intelligence and artificial neural network applications in different scopes such as medicine, industry, biology, history, military industries, recognition science, space, machine learning and etc., Neural Networks: History and Applications first discusses a comprehensive investigation of artificial neural networks. Next, the authors focus on studies carried out with the artificial neural network approach on the emotion recognition from 2D facial expressions between 2009 and 2019. The major objective of this study is to review, identify, evaluate and analyze the performance of artificial neural network models in emotion recognition applications. This compilation also proposes a simple nonlinear approach for dipole mode index prediction where past values of dipole mode index were used as inputs, and future values were predicted by artificial neural networks. The study was also conducted for seasonal dipole mode index prediction because the dipole mode index is more prominent in the Sep-Oct-Nov season. A subsequent study focuses on how mammography has a high false negative and false positive rate. As such, computer-aided diagnosis systems have been commercialized to help in micro-calcification detection and malignancy differentiation. Yet, little has been explored in differentiating breast cancers with artificial neural networks, one example of computer-aided diagnosis systems. The authors aim to bridge this gap in research. The penultimate chapter reviews the general conditions under which synaptic plasticity most effectively takes place to support the supervised learning of a precise temporal code. Then, the accuracy of each plasticity rule with respect to its temporal encoding precision is examined, and the maximum number of input patterns it can memorize using the precise timings of individual spikes as an indicator of storage capacity in different control and recognition tasks is explored. In closing, a case study is presented centered on an intelligent decision support system that is built on a neural network model based on the Encog machine learning framework to predict cryptocurrency close prices"--
Book Synopsis Neural Networks and Deep Learning by : Charu C. Aggarwal
Download or read book Neural Networks and Deep Learning written by Charu C. Aggarwal and published by Springer. This book was released on 2018-08-25 with total page 512 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book covers both classical and modern models in deep learning. The primary focus is on the theory and algorithms of deep learning. The theory and algorithms of neural networks are particularly important for understanding important concepts, so that one can understand the important design concepts of neural architectures in different applications. Why do neural networks work? When do they work better than off-the-shelf machine-learning models? When is depth useful? Why is training neural networks so hard? What are the pitfalls? The book is also rich in discussing different applications in order to give the practitioner a flavor of how neural architectures are designed for different types of problems. Applications associated with many different areas like recommender systems, machine translation, image captioning, image classification, reinforcement-learning based gaming, and text analytics are covered. The chapters of this book span three categories: The basics of neural networks: Many traditional machine learning models can be understood as special cases of neural networks. An emphasis is placed in the first two chapters on understanding the relationship between traditional machine learning and neural networks. Support vector machines, linear/logistic regression, singular value decomposition, matrix factorization, and recommender systems are shown to be special cases of neural networks. These methods are studied together with recent feature engineering methods like word2vec. Fundamentals of neural networks: A detailed discussion of training and regularization is provided in Chapters 3 and 4. Chapters 5 and 6 present radial-basis function (RBF) networks and restricted Boltzmann machines. Advanced topics in neural networks: Chapters 7 and 8 discuss recurrent neural networks and convolutional neural networks. Several advanced topics like deep reinforcement learning, neural Turing machines, Kohonen self-organizing maps, and generative adversarial networks are introduced in Chapters 9 and 10. The book is written for graduate students, researchers, and practitioners. Numerous exercises are available along with a solution manual to aid in classroom teaching. Where possible, an application-centric view is highlighted in order to provide an understanding of the practical uses of each class of techniques.
Book Synopsis Self-Organizing Neural Networks by : Udo Seiffert
Download or read book Self-Organizing Neural Networks written by Udo Seiffert and published by Physica. This book was released on 2013-11-11 with total page 289 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Self-Organizing Map (SOM) is one of the most frequently used architectures for unsupervised artificial neural networks. Introduced by Teuvo Kohonen in the 1980s, SOMs have been developed as a very powerful method for visualization and unsupervised classification tasks by an active and innovative community of interna tional researchers. A number of extensions and modifications have been developed during the last two decades. The reason is surely not that the original algorithm was imperfect or inad equate. It is rather the universal applicability and easy handling of the SOM. Com pared to many other network paradigms, only a few parameters need to be arranged and thus also for a beginner the network leads to useful and reliable results. Never theless there is scope for improvements and sophisticated new developments as this book impressively demonstrates. The number of published applications utilizing the SOM appears to be unending. As the title of this book indicates, the reader will benefit from some of the latest the oretical developments and will become acquainted with a number of challenging real-world applications. Our aim in producing this book has been to provide an up to-date treatment of the field of self-organizing neural networks, which will be ac cessible to researchers, practitioners and graduated students from diverse disciplines in academics and industry. We are very grateful to the father of the SOMs, Professor Teuvo Kohonen for sup porting this book and contributing the first chapter.
Book Synopsis Neural Computing for Advanced Applications by : Haijun Zhang
Download or read book Neural Computing for Advanced Applications written by Haijun Zhang and published by Springer Nature. This book was released on 2020-08-12 with total page 542 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents refereed proceedings of the First International Conference on Neural Computing for Advanced Applications, NCAA 2020, held in July, 2020. Due to the COVID-19 pandemic the conference was held online. The 36 full papers and 7 short papers were thorougly reviewed and selected from a total of 113 qualified submissions. The papers present resent research on such topics as neural network theory, and cognitive sciences, machine learning, data mining, data security & privacy protection, and data-driven applications, computational intelligence, nature-inspired optimizers, and their engineering applications, cloud/edge/fog computing, the Internet of Things/Vehicles (IoT/IoV), and their system optimization, control systems, network synchronization, system integration, and industrial artificial intelligence, fuzzy logic, neuro-fuzzy systems, decision making, and their applications in management sciences, computer vision, image processing, and their industrial applications, and natural language processing, machine translation, knowledge graphs, and their applications.