Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Advances In Machine Learning And Big Data Analytics Ii
Download Advances In Machine Learning And Big Data Analytics Ii full books in PDF, epub, and Kindle. Read online Advances In Machine Learning And Big Data Analytics Ii ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis Applications of Machine Learning in Big-Data Analytics and Cloud Computing by : Subhendu Kumar Pani
Download or read book Applications of Machine Learning in Big-Data Analytics and Cloud Computing written by Subhendu Kumar Pani and published by CRC Press. This book was released on 2022-09-01 with total page 346 pages. Available in PDF, EPUB and Kindle. Book excerpt: Cloud Computing and Big Data technologies have become the new descriptors of the digital age. The global amount of digital data has increased more than nine times in volume in just five years and by 2030 its volume may reach a staggering 65 trillion gigabytes. This explosion of data has led to opportunities and transformation in various areas such as healthcare, enterprises, industrial manufacturing and transportation. New Cloud Computing and Big Data tools endow researchers and analysts with novel techniques and opportunities to collect, manage and analyze the vast quantities of data. In Cloud and Big Data Analytics, the two areas of Swarm Intelligence and Deep Learning are a developing type of Machine Learning techniques that show enormous potential for solving complex business problems. Deep Learning enables computers to analyze large quantities of unstructured and binary data and to deduce relationships without requiring specific models or programming instructions. This book introduces the state-of-the-art trends and advances in the use of Machine Learning in Cloud and Big Data Analytics. The book will serve as a reference for Data Scientists, systems architects, developers, new researchers and graduate level students in Computer and Data science. The book will describe the concepts necessary to understand current Machine Learning issues, challenges and possible solutions as well as upcoming trends in Big Data Analytics.
Book Synopsis Advanced Deep Learning Applications in Big Data Analytics by : Bouarara, Hadj Ahmed
Download or read book Advanced Deep Learning Applications in Big Data Analytics written by Bouarara, Hadj Ahmed and published by IGI Global. This book was released on 2020-10-16 with total page 351 pages. Available in PDF, EPUB and Kindle. Book excerpt: Interest in big data has swelled within the scholarly community as has increased attention to the internet of things (IoT). Algorithms are constructed in order to parse and analyze all this data to facilitate the exchange of information. However, big data has suffered from problems in connectivity, scalability, and privacy since its birth. The application of deep learning algorithms has helped process those challenges and remains a major issue in today’s digital world. Advanced Deep Learning Applications in Big Data Analytics is a pivotal reference source that aims to develop new architecture and applications of deep learning algorithms in big data and the IoT. Highlighting a wide range of topics such as artificial intelligence, cloud computing, and neural networks, this book is ideally designed for engineers, data analysts, data scientists, IT specialists, programmers, marketers, entrepreneurs, researchers, academicians, and students.
Book Synopsis Machine Learning for Big Data Analysis by : Siddhartha Bhattacharyya
Download or read book Machine Learning for Big Data Analysis written by Siddhartha Bhattacharyya and published by Walter de Gruyter GmbH & Co KG. This book was released on 2018-12-17 with total page 194 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume comprises six well-versed contributed chapters devoted to report the latest fi ndings on the applications of machine learning for big data analytics. Big data is a term for data sets that are so large or complex that traditional data processing application software is inadequate to deal with them. The possible challenges in this direction include capture, storage, analysis, data curation, search, sharing, transfer, visualization, querying, updating and information privacy. Big data analytics is the process of examining large and varied data sets - i.e., big data - to uncover hidden patterns, unknown correlations, market trends, customer preferences and other useful information that can help organizations make more-informed business decisions. This volume is intended to be used as a reference by undergraduate and post graduate students of the disciplines of computer science, electronics and telecommunication, information science and electrical engineering. THE SERIES: FRONTIERS IN COMPUTATIONAL INTELLIGENCE The series Frontiers In Computational Intelligence is envisioned to provide comprehensive coverage and understanding of cutting edge research in computational intelligence. It intends to augment the scholarly discourse on all topics relating to the advances in artifi cial life and machine learning in the form of metaheuristics, approximate reasoning, and robotics. Latest research fi ndings are coupled with applications to varied domains of engineering and computer sciences. This field is steadily growing especially with the advent of novel machine learning algorithms being applied to different domains of engineering and technology. The series brings together leading researchers that intend to continue to advance the fi eld and create a broad knowledge about the most recent research.
Book Synopsis Machine Learning Paradigms by : Maria Virvou
Download or read book Machine Learning Paradigms written by Maria Virvou and published by Springer. This book was released on 2019-03-16 with total page 230 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents recent machine learning paradigms and advances in learning analytics, an emerging research discipline concerned with the collection, advanced processing, and extraction of useful information from both educators’ and learners’ data with the goal of improving education and learning systems. In this context, internationally respected researchers present various aspects of learning analytics and selected application areas, including: • Using learning analytics to measure student engagement, to quantify the learning experience and to facilitate self-regulation; • Using learning analytics to predict student performance; • Using learning analytics to create learning materials and educational courses; and • Using learning analytics as a tool to support learners and educators in synchronous and asynchronous eLearning. The book offers a valuable asset for professors, researchers, scientists, engineers and students of all disciplines. Extensive bibliographies at the end of each chapter guide readers to probe further into their application areas of interest.
Book Synopsis Artificial Intelligence for Big Data by : Anand Deshpande
Download or read book Artificial Intelligence for Big Data written by Anand Deshpande and published by Packt Publishing Ltd. This book was released on 2018-05-22 with total page 371 pages. Available in PDF, EPUB and Kindle. Book excerpt: Build next-generation Artificial Intelligence systems with Java Key Features Implement AI techniques to build smart applications using Deeplearning4j Perform big data analytics to derive quality insights using Spark MLlib Create self-learning systems using neural networks, NLP, and reinforcement learning Book Description In this age of big data, companies have larger amount of consumer data than ever before, far more than what the current technologies can ever hope to keep up with. However, Artificial Intelligence closes the gap by moving past human limitations in order to analyze data. With the help of Artificial Intelligence for big data, you will learn to use Machine Learning algorithms such as k-means, SVM, RBF, and regression to perform advanced data analysis. You will understand the current status of Machine and Deep Learning techniques to work on Genetic and Neuro-Fuzzy algorithms. In addition, you will explore how to develop Artificial Intelligence algorithms to learn from data, why they are necessary, and how they can help solve real-world problems. By the end of this book, you'll have learned how to implement various Artificial Intelligence algorithms for your big data systems and integrate them into your product offerings such as reinforcement learning, natural language processing, image recognition, genetic algorithms, and fuzzy logic systems. What you will learn Manage Artificial Intelligence techniques for big data with Java Build smart systems to analyze data for enhanced customer experience Learn to use Artificial Intelligence frameworks for big data Understand complex problems with algorithms and Neuro-Fuzzy systems Design stratagems to leverage data using Machine Learning process Apply Deep Learning techniques to prepare data for modeling Construct models that learn from data using open source tools Analyze big data problems using scalable Machine Learning algorithms Who this book is for This book is for you if you are a data scientist, big data professional, or novice who has basic knowledge of big data and wish to get proficiency in Artificial Intelligence techniques for big data. Some competence in mathematics is an added advantage in the field of elementary linear algebra and calculus.
Book Synopsis Knowledge Modelling and Big Data Analytics in Healthcare by : Mayuri Mehta
Download or read book Knowledge Modelling and Big Data Analytics in Healthcare written by Mayuri Mehta and published by CRC Press. This book was released on 2021-12-08 with total page 363 pages. Available in PDF, EPUB and Kindle. Book excerpt: Knowledge Modelling and Big Data Analytics in Healthcare: Advances and Applications focuses on automated analytical techniques for healthcare applications used to extract knowledge from a vast amount of data. It brings together a variety of different aspects of the healthcare system and aids in the decision-making processes for healthcare professionals. The editors connect four contemporary areas of research rarely brought together in one book: artificial intelligence, big data analytics, knowledge modelling, and healthcare. They present state-of-the-art research from the healthcare sector, including research on medical imaging, healthcare analysis, and the applications of artificial intelligence in drug discovery. This book is intended for data scientists, academicians, and industry professionals in the healthcare sector.
Book Synopsis Handbook On Big Data And Machine Learning In The Physical Sciences (In 2 Volumes) by :
Download or read book Handbook On Big Data And Machine Learning In The Physical Sciences (In 2 Volumes) written by and published by World Scientific. This book was released on 2020-03-10 with total page 1001 pages. Available in PDF, EPUB and Kindle. Book excerpt: This compendium provides a comprehensive collection of the emergent applications of big data, machine learning, and artificial intelligence technologies to present day physical sciences ranging from materials theory and imaging to predictive synthesis and automated research. This area of research is among the most rapidly developing in the last several years in areas spanning materials science, chemistry, and condensed matter physics.Written by world renowned researchers, the compilation of two authoritative volumes provides a distinct summary of the modern advances in instrument — driven data generation and analytics, establishing the links between the big data and predictive theories, and outlining the emerging field of data and physics-driven predictive and autonomous systems.
Book Synopsis Advanced Data Analytics Using Python by : Sayan Mukhopadhyay
Download or read book Advanced Data Analytics Using Python written by Sayan Mukhopadhyay and published by Apress. This book was released on 2018-03-29 with total page 195 pages. Available in PDF, EPUB and Kindle. Book excerpt: Gain a broad foundation of advanced data analytics concepts and discover the recent revolution in databases such as Neo4j, Elasticsearch, and MongoDB. This book discusses how to implement ETL techniques including topical crawling, which is applied in domains such as high-frequency algorithmic trading and goal-oriented dialog systems. You’ll also see examples of machine learning concepts such as semi-supervised learning, deep learning, and NLP. Advanced Data Analytics Using Python also covers important traditional data analysis techniques such as time series and principal component analysis. After reading this book you will have experience of every technical aspect of an analytics project. You’ll get to know the concepts using Python code, giving you samples to use in your own projects. What You Will Learn Work with data analysis techniques such as classification, clustering, regression, and forecasting Handle structured and unstructured data, ETL techniques, and different kinds of databases such as Neo4j, Elasticsearch, MongoDB, and MySQL Examine the different big data frameworks, including Hadoop and Spark Discover advanced machine learning concepts such as semi-supervised learning, deep learning, and NLP Who This Book Is For Data scientists and software developers interested in the field of data analytics.
Book Synopsis Demystifying Big Data, Machine Learning, and Deep Learning for Healthcare Analytics by : Pradeep N
Download or read book Demystifying Big Data, Machine Learning, and Deep Learning for Healthcare Analytics written by Pradeep N and published by Academic Press. This book was released on 2021-06-10 with total page 374 pages. Available in PDF, EPUB and Kindle. Book excerpt: Demystifying Big Data, Machine Learning, and Deep Learning for Healthcare Analytics presents the changing world of data utilization, especially in clinical healthcare. Various techniques, methodologies, and algorithms are presented in this book to organize data in a structured manner that will assist physicians in the care of patients and help biomedical engineers and computer scientists understand the impact of these techniques on healthcare analytics. The book is divided into two parts: Part 1 covers big data aspects such as healthcare decision support systems and analytics-related topics. Part 2 focuses on the current frameworks and applications of deep learning and machine learning, and provides an outlook on future directions of research and development. The entire book takes a case study approach, providing a wealth of real-world case studies in the application chapters to act as a foundational reference for biomedical engineers, computer scientists, healthcare researchers, and clinicians. - Provides a comprehensive reference for biomedical engineers, computer scientists, advanced industry practitioners, researchers, and clinicians to understand and develop healthcare analytics using advanced tools and technologies - Includes in-depth illustrations of advanced techniques via dataset samples, statistical tables, and graphs with algorithms and computational methods for developing new applications in healthcare informatics - Unique case study approach provides readers with insights for practical clinical implementation
Book Synopsis Machine Learning and Big Data by : Uma N. Dulhare
Download or read book Machine Learning and Big Data written by Uma N. Dulhare and published by John Wiley & Sons. This book was released on 2020-09-01 with total page 544 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is intended for academic and industrial developers, exploring and developing applications in the area of big data and machine learning, including those that are solving technology requirements, evaluation of methodology advances and algorithm demonstrations. The intent of this book is to provide awareness of algorithms used for machine learning and big data in the academic and professional community. The 17 chapters are divided into 5 sections: Theoretical Fundamentals; Big Data and Pattern Recognition; Machine Learning: Algorithms & Applications; Machine Learning's Next Frontier and Hands-On and Case Study. While it dwells on the foundations of machine learning and big data as a part of analytics, it also focuses on contemporary topics for research and development. In this regard, the book covers machine learning algorithms and their modern applications in developing automated systems. Subjects covered in detail include: Mathematical foundations of machine learning with various examples. An empirical study of supervised learning algorithms like Naïve Bayes, KNN and semi-supervised learning algorithms viz. S3VM, Graph-Based, Multiview. Precise study on unsupervised learning algorithms like GMM, K-mean clustering, Dritchlet process mixture model, X-means and Reinforcement learning algorithm with Q learning, R learning, TD learning, SARSA Learning, and so forth. Hands-on machine leaning open source tools viz. Apache Mahout, H2O. Case studies for readers to analyze the prescribed cases and present their solutions or interpretations with intrusion detection in MANETS using machine learning. Showcase on novel user-cases: Implications of Electronic Governance as well as Pragmatic Study of BD/ML technologies for agriculture, healthcare, social media, industry, banking, insurance and so on.
Book Synopsis Big Data Analysis and Deep Learning Applications by : Thi Thi Zin
Download or read book Big Data Analysis and Deep Learning Applications written by Thi Thi Zin and published by Springer. This book was released on 2018-06-06 with total page 388 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents a compilation of selected papers from the first International Conference on Big Data Analysis and Deep Learning Applications (ICBDL 2018), and focuses on novel techniques in the fields of big data analysis, machine learning, system monitoring, image processing, conventional neural networks, communication, industrial information, and their applications. Readers will find insights to help them realize more efficient algorithms and systems used in real-life applications and contexts, making the book an essential reference guide for academic researchers, professionals, software engineers in the industry, and regulators of aviation authorities.
Book Synopsis Intelligence in Big Data Technologies—Beyond the Hype by : J. Dinesh Peter
Download or read book Intelligence in Big Data Technologies—Beyond the Hype written by J. Dinesh Peter and published by Springer Nature. This book was released on 2020-07-25 with total page 625 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is a compendium of the proceedings of the International Conference on Big-Data and Cloud Computing. The papers discuss the recent advances in the areas of big data analytics, data analytics in cloud, smart cities and grid, etc. This volume primarily focuses on the application of knowledge which promotes ideas for solving problems of the society through cutting-edge big-data technologies. The essays featured in this proceeding provide novel ideas that contribute for the growth of world class research and development. It will be useful to researchers in the area of advanced engineering sciences.
Book Synopsis Demystifying Big Data and Machine Learning for Healthcare by : Prashant Natarajan
Download or read book Demystifying Big Data and Machine Learning for Healthcare written by Prashant Natarajan and published by CRC Press. This book was released on 2017-02-15 with total page 227 pages. Available in PDF, EPUB and Kindle. Book excerpt: Healthcare transformation requires us to continually look at new and better ways to manage insights – both within and outside the organization today. Increasingly, the ability to glean and operationalize new insights efficiently as a byproduct of an organization’s day-to-day operations is becoming vital to hospitals and health systems ability to survive and prosper. One of the long-standing challenges in healthcare informatics has been the ability to deal with the sheer variety and volume of disparate healthcare data and the increasing need to derive veracity and value out of it. Demystifying Big Data and Machine Learning for Healthcare investigates how healthcare organizations can leverage this tapestry of big data to discover new business value, use cases, and knowledge as well as how big data can be woven into pre-existing business intelligence and analytics efforts. This book focuses on teaching you how to: Develop skills needed to identify and demolish big-data myths Become an expert in separating hype from reality Understand the V’s that matter in healthcare and why Harmonize the 4 C’s across little and big data Choose data fi delity over data quality Learn how to apply the NRF Framework Master applied machine learning for healthcare Conduct a guided tour of learning algorithms Recognize and be prepared for the future of artificial intelligence in healthcare via best practices, feedback loops, and contextually intelligent agents (CIAs) The variety of data in healthcare spans multiple business workflows, formats (structured, un-, and semi-structured), integration at point of care/need, and integration with existing knowledge. In order to deal with these realities, the authors propose new approaches to creating a knowledge-driven learning organization-based on new and existing strategies, methods and technologies. This book will address the long-standing challenges in healthcare informatics and provide pragmatic recommendations on how to deal with them.
Book Synopsis The 2021 International Conference on Machine Learning and Big Data Analytics for IoT Security and Privacy by : John Macintyre
Download or read book The 2021 International Conference on Machine Learning and Big Data Analytics for IoT Security and Privacy written by John Macintyre and published by Springer Nature. This book was released on 2021-11-02 with total page 999 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents the proceedings of the 2020 2nd International Conference on Machine Learning and Big Data Analytics for IoT Security and Privacy (SPIoT-2021), online conference, on 30 October 2021. It provides comprehensive coverage of the latest advances and trends in information technology, science and engineering, addressing a number of broad themes, including novel machine learning and big data analytics methods for IoT security, data mining and statistical modelling for the secure IoT and machine learning-based security detecting protocols, which inspire the development of IoT security and privacy technologies. The contributions cover a wide range of topics: analytics and machine learning applications to IoT security; data-based metrics and risk assessment approaches for IoT; data confidentiality and privacy in IoT; and authentication and access control for data usage in IoT. Outlining promising future research directions, the book is a valuable resource for students, researchers and professionals and provides a useful reference guide for newcomers to the IoT security and privacy field.
Book Synopsis Advances in Machine Learning for Big Data Analysis by : Satchidananda Dehuri
Download or read book Advances in Machine Learning for Big Data Analysis written by Satchidananda Dehuri and published by Springer Nature. This book was released on 2022-02-24 with total page 254 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book focuses on research aspects of ensemble approaches of machine learning techniques that can be applied to address the big data problems. In this book, various advancements of machine learning algorithms to extract data-driven decisions from big data in diverse domains such as the banking sector, healthcare, social media, and video surveillance are presented in several chapters. Each of them has separate functionalities, which can be leveraged to solve a specific set of big data applications. This book is a potential resource for various advances in the field of machine learning and data science to solve big data problems with many objectives. It has been observed from the literature that several works have been focused on the advancement of machine learning in various fields like biomedical, stock prediction, sentiment analysis, etc. However, limited discussions have been carried out on application of advanced machine learning techniques in solving big data problems.
Book Synopsis Data Analytics and Big Data by : Soraya Sedkaoui
Download or read book Data Analytics and Big Data written by Soraya Sedkaoui and published by John Wiley & Sons. This book was released on 2018-05-24 with total page 149 pages. Available in PDF, EPUB and Kindle. Book excerpt: The main purpose of this book is to investigate, explore and describe approaches and methods to facilitate data understanding through analytics solutions based on its principles, concepts and applications. But analyzing data is also about involving the use of software. For this, and in order to cover some aspect of data analytics, this book uses software (Excel, SPSS, Python, etc) which can help readers to better understand the analytics process in simple terms and supporting useful methods in its application.
Book Synopsis Big Data, IoT, and Machine Learning by : Rashmi Agrawal
Download or read book Big Data, IoT, and Machine Learning written by Rashmi Agrawal and published by CRC Press. This book was released on 2020-07-29 with total page 249 pages. Available in PDF, EPUB and Kindle. Book excerpt: The idea behind this book is to simplify the journey of aspiring readers and researchers to understand Big Data, IoT and Machine Learning. It also includes various real-time/offline applications and case studies in the fields of engineering, computer science, information security and cloud computing using modern tools. This book consists of two sections: Section I contains the topics related to Applications of Machine Learning, and Section II addresses issues about Big Data, the Cloud and the Internet of Things. This brings all the related technologies into a single source so that undergraduate and postgraduate students, researchers, academicians and people in industry can easily understand them. Features Addresses the complete data science technologies workflow Explores basic and high-level concepts and services as a manual for those in the industry and at the same time can help beginners to understand both basic and advanced aspects of machine learning Covers data processing and security solutions in IoT and Big Data applications Offers adaptive, robust, scalable and reliable applications to develop solutions for day-to-day problems Presents security issues and data migration techniques of NoSQL databases