Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Abstract Parabolic Evolution Equations And Lojasiewicz Simon Inequality Ii
Download Abstract Parabolic Evolution Equations And Lojasiewicz Simon Inequality Ii full books in PDF, epub, and Kindle. Read online Abstract Parabolic Evolution Equations And Lojasiewicz Simon Inequality Ii ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis Abstract Parabolic Evolution Equations and Łojasiewicz–Simon Inequality II by : Atsushi Yagi
Download or read book Abstract Parabolic Evolution Equations and Łojasiewicz–Simon Inequality II written by Atsushi Yagi and published by Springer Nature. This book was released on 2021-08-12 with total page 128 pages. Available in PDF, EPUB and Kindle. Book excerpt: This second volume continues the study on asymptotic convergence of global solutions of parabolic equations to stationary solutions by utilizing the theory of abstract parabolic evolution equations and the Łojasiewicz–Simon gradient inequality. In the first volume of the same title, after setting the abstract frameworks of arguments, a general convergence theorem was proved under the four structural assumptions of critical condition, Lyapunov function, angle condition, and gradient inequality. In this volume, with those abstract results reviewed briefly, their applications to concrete parabolic equations are described. Chapter 3 presents a discussion of semilinear parabolic equations of second order in general n-dimensional spaces, and Chapter 4 is devoted to treating epitaxial growth equations of fourth order, which incorporate general roughening functions. In Chapter 5 consideration is given to the Keller–Segel equations in one-, two-, and three-dimensional spaces. Some of these results had already been obtained and published by the author in collaboration with his colleagues. However, by means of the abstract theory described in the first volume, those results can be extended much more. Readers of this monograph should have a standard-level knowledge of functional analysis and of function spaces. Familiarity with functional analytic methods for partial differential equations is also assumed.
Book Synopsis Abstract Parabolic Evolution Equations and Łojasiewicz–Simon Inequality I by : Atsushi Yagi
Download or read book Abstract Parabolic Evolution Equations and Łojasiewicz–Simon Inequality I written by Atsushi Yagi and published by Springer Nature. This book was released on 2021-05-31 with total page 68 pages. Available in PDF, EPUB and Kindle. Book excerpt: The classical Łojasiewicz gradient inequality (1963) was extended by Simon (1983) to the infinite-dimensional setting, now called the Łojasiewicz–Simon gradient inequality. This book presents a unified method to show asymptotic convergence of solutions to a stationary solution for abstract parabolic evolution equations of the gradient form by utilizing this Łojasiewicz–Simon gradient inequality. In order to apply the abstract results to a wider class of concrete nonlinear parabolic equations, the usual Łojasiewicz–Simon inequality is extended, which is published here for the first time. In the second version, these abstract results are applied to reaction–diffusion equations with discontinuous coefficients, reaction–diffusion systems, and epitaxial growth equations. The results are also applied to the famous chemotaxis model, i.e., the Keller–Segel equations even for higher-dimensional ones.
Book Synopsis Abstract Parabolic Evolution Equations and Łojasiewicz-Simon Inequality I by : Atsushi Yagi
Download or read book Abstract Parabolic Evolution Equations and Łojasiewicz-Simon Inequality I written by Atsushi Yagi and published by . This book was released on 2021 with total page 68 pages. Available in PDF, EPUB and Kindle. Book excerpt: The classical ojasiewicz gradient inequality (1963) was extended by Simon (1983) to the infinite-dimensional setting, now called the ojasiewiczSimon gradient inequality. This book presents a unified method to show asymptotic convergence of solutions to a stationary solution for abstract parabolic evolution equations of the gradient form by utilizing this ojasiewiczSimon gradient inequality. In order to apply the abstract results to a wider class of concrete nonlinear parabolic equations, the usual ojasiewiczSimon inequality is extended, which is published here for the first time. In the second version, these abstract results are applied to reactiondiffusion equations with discontinuous coefficients, reactiondiffusion systems, and epitaxial growth equations. The results are also applied to the famous chemotaxis model, i.e., the KellerSegel equations even for higher-dimensional ones.
Book Synopsis Nonlinear Evolution Equations and Related Topics by : Wolfgang Arendt
Download or read book Nonlinear Evolution Equations and Related Topics written by Wolfgang Arendt and published by Birkhäuser. This book was released on 2012-12-06 with total page 803 pages. Available in PDF, EPUB and Kindle. Book excerpt: Philippe Bénilan was a most original and charismatic mathematician who had a deep and decisive impact on the theory of Nonlinear Evolution Equations. Dedicated to him, Nonlinear Evolution Equations and Related Topics contains research papers written by highly distinguished mathematicians. They are all related to Philippe Benilan's work and reflect the present state of this most active field. The contributions cover a wide range of nonlinear and linear equations.
Book Synopsis Łojasiewicz-Simon Gradient Inequalities for Coupled Yang-Mills Energy Functionals by : Paul M Feehan
Download or read book Łojasiewicz-Simon Gradient Inequalities for Coupled Yang-Mills Energy Functionals written by Paul M Feehan and published by American Mathematical Society. This book was released on 2021-02-10 with total page 138 pages. Available in PDF, EPUB and Kindle. Book excerpt: The authors' primary goal in this monograph is to prove Łojasiewicz-Simon gradient inequalities for coupled Yang-Mills energy functions using Sobolev spaces that impose minimal regularity requirements on pairs of connections and sections.
Book Synopsis The obstacle problem by : Luis Angel Caffarelli
Download or read book The obstacle problem written by Luis Angel Caffarelli and published by Edizioni della Normale. This book was released on 1999-10-01 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: The material presented here corresponds to Fermi lectures that I was invited to deliver at the Scuola Normale di Pisa in the spring of 1998. The obstacle problem consists in studying the properties of minimizers of the Dirichlet integral in a domain D of Rn, among all those configurations u with prescribed boundary values and costrained to remain in D above a prescribed obstacle F. In the Hilbert space H1(D) of all those functions with square integrable gradient, we consider the closed convex set K of functions u with fixed boundary value and which are greater than F in D. There is a unique point in K minimizing the Dirichlet integral. That is called the solution to the obstacle problem.
Book Synopsis Journal of analysis and its applications by :
Download or read book Journal of analysis and its applications written by and published by . This book was released on 2006 with total page 592 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis Neckpinch Dynamics for Asymmetric Surfaces Evolving by Mean Curvature Flow by : Zhou Gang
Download or read book Neckpinch Dynamics for Asymmetric Surfaces Evolving by Mean Curvature Flow written by Zhou Gang and published by American Mathematical Soc.. This book was released on 2018-05-29 with total page 90 pages. Available in PDF, EPUB and Kindle. Book excerpt: The authors study noncompact surfaces evolving by mean curvature flow (mcf). For an open set of initial data that are $C^3$-close to round, but without assuming rotational symmetry or positive mean curvature, the authors show that mcf solutions become singular in finite time by forming neckpinches, and they obtain detailed asymptotics of that singularity formation. The results show in a precise way that mcf solutions become asymptotically rotationally symmetric near a neckpinch singularity.
Book Synopsis The Yang-Mills Heat Equation with Finite Action in Three Dimensions by : Leonard Gross
Download or read book The Yang-Mills Heat Equation with Finite Action in Three Dimensions written by Leonard Gross and published by American Mathematical Society. This book was released on 2022-02-02 with total page 111 pages. Available in PDF, EPUB and Kindle. Book excerpt: View the abstract.
Book Synopsis Abstract Parabolic Evolution Equations and their Applications by : Atsushi Yagi
Download or read book Abstract Parabolic Evolution Equations and their Applications written by Atsushi Yagi and published by Springer Science & Business Media. This book was released on 2009-11-03 with total page 594 pages. Available in PDF, EPUB and Kindle. Book excerpt: This monograph is intended to present the fundamentals of the theory of abstract parabolic evolution equations and to show how to apply to various nonlinear dif- sion equations and systems arising in science. The theory gives us a uni?ed and s- tematic treatment for concrete nonlinear diffusion models. Three main approaches are known to the abstract parabolic evolution equations, namely, the semigroup methods, the variational methods, and the methods of using operational equations. In order to keep the volume of the monograph in reasonable length, we will focus on the semigroup methods. For other two approaches, see the related references in Bibliography. The semigroup methods, which go back to the invention of the analytic se- groups in the middle of the last century, are characterized by precise formulas representing the solutions of the Cauchy problem for evolution equations. The ?tA analytic semigroup e generated by a linear operator ?A provides directly a fundamental solution to the Cauchy problem for an autonomous linear e- dU lution equation, +AU =F(t), 0
Book Synopsis Partial Differential Equations arising from Physics and Geometry by : Mohamed Ben Ayed
Download or read book Partial Differential Equations arising from Physics and Geometry written by Mohamed Ben Ayed and published by Cambridge University Press. This book was released on 2019-05-02 with total page 471 pages. Available in PDF, EPUB and Kindle. Book excerpt: Presents the state of the art in PDEs, including the latest research and short courses accessible to graduate students.
Book Synopsis The CahnHilliard Equation: Recent Advances and Applications by : Alain Miranville
Download or read book The CahnHilliard Equation: Recent Advances and Applications written by Alain Miranville and published by SIAM. This book was released on 2019-09-09 with total page 231 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is the first book to present a detailed discussion of both classical and recent results on the popular CahnHilliard equation and some of its variants. The focus is on mathematical analysis of CahnHilliard models, with an emphasis on thermodynamically relevant logarithmic nonlinear terms, for which several questions are still open. Initially proposed in view of applications to materials science, the CahnHilliard equation is now applied in many other areas, including image processing, biology, ecology, astronomy, and chemistry. In particular, the author addresses applications to image inpainting and tumor growth. Many chapters include open problems and directions for future research. The Cahn-Hilliard Equation: Recent Advances and Applications is intended for graduate students and researchers in applied mathematics, especially those interested in phase separation models and their generalizations and applications to other fields. Materials scientists also will find this text of interest.
Book Synopsis Lecture Notes on Mean Curvature Flow by : Carlo Mantegazza
Download or read book Lecture Notes on Mean Curvature Flow written by Carlo Mantegazza and published by Springer Science & Business Media. This book was released on 2011-07-28 with total page 175 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is an introduction to the subject of mean curvature flow of hypersurfaces with special emphasis on the analysis of singularities. This flow occurs in the description of the evolution of numerous physical models where the energy is given by the area of the interfaces. These notes provide a detailed discussion of the classical parametric approach (mainly developed by R. Hamilton and G. Huisken). They are well suited for a course at PhD/PostDoc level and can be useful for any researcher interested in a solid introduction to the technical issues of the field. All the proofs are carefully written, often simplified, and contain several comments. Moreover, the author revisited and organized a large amount of material scattered around in literature in the last 25 years.
Book Synopsis Ginzburg-Landau Vortices by : Fabrice Bethuel
Download or read book Ginzburg-Landau Vortices written by Fabrice Bethuel and published by Birkhäuser. This book was released on 2017-09-21 with total page 188 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is concerned with the study in two dimensions of stationary solutions of uɛ of a complex valued Ginzburg-Landau equation involving a small parameter ɛ. Such problems are related to questions occurring in physics, e.g., phase transition phenomena in superconductors and superfluids. The parameter ɛ has a dimension of a length which is usually small. Thus, it is of great interest to study the asymptotics as ɛ tends to zero. One of the main results asserts that the limit u-star of minimizers uɛ exists. Moreover, u-star is smooth except at a finite number of points called defects or vortices in physics. The number of these defects is exactly the Brouwer degree – or winding number – of the boundary condition. Each singularity has degree one – or as physicists would say, vortices are quantized. The material presented in this book covers mostly original results by the authors. It assumes a moderate knowledge of nonlinear functional analysis, partial differential equations, and complex functions. This book is designed for researchers and graduate students alike, and can be used as a one-semester text. The present softcover reprint is designed to make this classic text available to a wider audience.
Book Synopsis Geometric Theory of Dynamical Systems by : J. Jr. Palis
Download or read book Geometric Theory of Dynamical Systems written by J. Jr. Palis and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 208 pages. Available in PDF, EPUB and Kindle. Book excerpt: ... cette etude qualitative (des equations difj'erentielles) aura par elle-m me un inter t du premier ordre ... HENRI POINCARE, 1881. We present in this book a view of the Geometric Theory of Dynamical Systems, which is introductory and yet gives the reader an understanding of some of the basic ideas involved in two important topics: structural stability and genericity. This theory has been considered by many mathematicians starting with Poincare, Liapunov and Birkhoff. In recent years some of its general aims were established and it experienced considerable development. More than two decades passed between two important events: the work of Andronov and Pontryagin (1937) introducing the basic concept of structural stability and the articles of Peixoto (1958-1962) proving the density of stable vector fields on surfaces. It was then that Smale enriched the theory substantially by defining as a main objective the search for generic and stable properties and by obtaining results and proposing problems of great relevance in this context. In this same period Hartman and Grobman showed that local stability is a generic property. Soon after this Kupka and Smale successfully attacked the problem for periodic orbits. We intend to give the reader the flavour of this theory by means of many examples and by the systematic proof of the Hartman-Grobman and the Stable Manifold Theorems (Chapter 2), the Kupka-Smale Theorem (Chapter 3) and Peixoto's Theorem (Chapter 4). Several ofthe proofs we give vii Introduction Vlll are simpler than the original ones and are open to important generalizations.
Book Synopsis Theorems on Regularity and Singularity of Energy Minimizing Maps by : Leon Simon
Download or read book Theorems on Regularity and Singularity of Energy Minimizing Maps written by Leon Simon and published by Birkhäuser. This book was released on 2012-12-06 with total page 160 pages. Available in PDF, EPUB and Kindle. Book excerpt: The aim of these lecture notes is to give an essentially self-contained introduction to the basic regularity theory for energy minimizing maps, including recent developments concerning the structure of the singular set and asymptotics on approach to the singular set. Specialized knowledge in partial differential equations or the geometric calculus of variations is not required; a good general background in mathematical analysis would be adequate preparation.
Book Synopsis Some Nonlinear Problems in Riemannian Geometry by : Thierry Aubin
Download or read book Some Nonlinear Problems in Riemannian Geometry written by Thierry Aubin and published by Springer Science & Business Media. This book was released on 2013-03-09 with total page 414 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book deals with such important subjects as variational methods, the continuity method, parabolic equations on fiber bundles, ideas concerning points of concentration, blowing-up technique, geometric and topological methods. It explores important geometric problems that are of interest to many mathematicians and scientists but have only recently been partially solved.