A Transition to Proof

Download A Transition to Proof PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 0429535473
Total Pages : 323 pages
Book Rating : 4.4/5 (295 download)

DOWNLOAD NOW!


Book Synopsis A Transition to Proof by : Neil R. Nicholson

Download or read book A Transition to Proof written by Neil R. Nicholson and published by CRC Press. This book was released on 2019-03-21 with total page 323 pages. Available in PDF, EPUB and Kindle. Book excerpt: A Transition to Proof: An Introduction to Advanced Mathematics describes writing proofs as a creative process. There is a lot that goes into creating a mathematical proof before writing it. Ample discussion of how to figure out the "nuts and bolts'" of the proof takes place: thought processes, scratch work and ways to attack problems. Readers will learn not just how to write mathematics but also how to do mathematics. They will then learn to communicate mathematics effectively. The text emphasizes the creativity, intuition, and correct mathematical exposition as it prepares students for courses beyond the calculus sequence. The author urges readers to work to define their mathematical voices. This is done with style tips and strict "mathematical do’s and don’ts", which are presented in eye-catching "text-boxes" throughout the text. The end result enables readers to fully understand the fundamentals of proof. Features: The text is aimed at transition courses preparing students to take analysis Promotes creativity, intuition, and accuracy in exposition The language of proof is established in the first two chapters, which cover logic and set theory Includes chapters on cardinality and introductory topology

Mathematical Proofs

Download Mathematical Proofs PDF Online Free

Author :
Publisher : Pearson Educacion
ISBN 13 : 9780321782519
Total Pages : 400 pages
Book Rating : 4.7/5 (825 download)

DOWNLOAD NOW!


Book Synopsis Mathematical Proofs by : Gary Chartrand

Download or read book Mathematical Proofs written by Gary Chartrand and published by Pearson Educacion. This book was released on 2013 with total page 400 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book prepares students for the more abstract mathematics courses that follow calculus. The author introduces students to proof techniques, analyzing proofs, and writing proofs of their own. It also provides a solid introduction to such topics as relations, functions, and cardinalities of sets, as well as the theoretical aspects of fields such as number theory, abstract algebra, and group theory.

A Transition to Mathematics with Proofs

Download A Transition to Mathematics with Proofs PDF Online Free

Author :
Publisher : Jones & Bartlett Publishers
ISBN 13 : 1449627781
Total Pages : 367 pages
Book Rating : 4.4/5 (496 download)

DOWNLOAD NOW!


Book Synopsis A Transition to Mathematics with Proofs by : Michael J. Cullinane

Download or read book A Transition to Mathematics with Proofs written by Michael J. Cullinane and published by Jones & Bartlett Publishers. This book was released on 2013 with total page 367 pages. Available in PDF, EPUB and Kindle. Book excerpt: Developed for the "transition" course for mathematics majors moving beyond the primarily procedural methods of their calculus courses toward a more abstract and conceptual environment found in more advanced courses, A Transition to Mathematics with Proofs emphasizes mathematical rigor and helps students learn how to develop and write mathematical proofs. The author takes great care to develop a text that is accessible and readable for students at all levels. It addresses standard topics such as set theory, number system, logic, relations, functions, and induction in at a pace appropriate for a wide range of readers. Throughout early chapters students gradually become aware of the need for rigor, proof, and precision, and mathematical ideas are motivated through examples.

Transition to Higher Mathematics

Download Transition to Higher Mathematics PDF Online Free

Author :
Publisher : McGraw-Hill Education
ISBN 13 : 9780071106474
Total Pages : 0 pages
Book Rating : 4.1/5 (64 download)

DOWNLOAD NOW!


Book Synopsis Transition to Higher Mathematics by : Bob A. Dumas

Download or read book Transition to Higher Mathematics written by Bob A. Dumas and published by McGraw-Hill Education. This book was released on 2007 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is written for students who have taken calculus and want to learn what "real mathematics" is.

A Transition to Advanced Mathematics

Download A Transition to Advanced Mathematics PDF Online Free

Author :
Publisher : Cengage Learning
ISBN 13 : 9780495562023
Total Pages : 416 pages
Book Rating : 4.5/5 (62 download)

DOWNLOAD NOW!


Book Synopsis A Transition to Advanced Mathematics by : Douglas Smith

Download or read book A Transition to Advanced Mathematics written by Douglas Smith and published by Cengage Learning. This book was released on 2010-06-01 with total page 416 pages. Available in PDF, EPUB and Kindle. Book excerpt: A TRANSITION TO ADVANCED MATHEMATICS helps students make the transition from calculus to more proofs-oriented mathematical study. The most successful text of its kind, the 7th edition continues to provide a firm foundation in major concepts needed for continued study and guides students to think and express themselves mathematically to analyze a situation, extract pertinent facts, and draw appropriate conclusions. The authors place continuous emphasis throughout on improving students' ability to read and write proofs, and on developing their critical awareness for spotting common errors in proofs. Concepts are clearly explained and supported with detailed examples, while abundant and diverse exercises provide thorough practice on both routine and more challenging problems. Students will come away with a solid intuition for the types of mathematical reasoning they'll need to apply in later courses and a better understanding of how mathematicians of all kinds approach and solve problems. Important Notice: Media content referenced within the product description or the product text may not be available in the ebook version.

Book of Proof

Download Book of Proof PDF Online Free

Author :
Publisher :
ISBN 13 : 9780989472111
Total Pages : 314 pages
Book Rating : 4.4/5 (721 download)

DOWNLOAD NOW!


Book Synopsis Book of Proof by : Richard H. Hammack

Download or read book Book of Proof written by Richard H. Hammack and published by . This book was released on 2016-01-01 with total page 314 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is an introduction to the language and standard proof methods of mathematics. It is a bridge from the computational courses (such as calculus or differential equations) that students typically encounter in their first year of college to a more abstract outlook. It lays a foundation for more theoretical courses such as topology, analysis and abstract algebra. Although it may be more meaningful to the student who has had some calculus, there is really no prerequisite other than a measure of mathematical maturity.

Introduction · to Mathematical Structures and · Proofs

Download Introduction · to Mathematical Structures and · Proofs PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1468467085
Total Pages : 355 pages
Book Rating : 4.4/5 (684 download)

DOWNLOAD NOW!


Book Synopsis Introduction · to Mathematical Structures and · Proofs by : Larry Gerstein

Download or read book Introduction · to Mathematical Structures and · Proofs written by Larry Gerstein and published by Springer Science & Business Media. This book was released on 2013-11-21 with total page 355 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is a textbook for a one-term course whose goal is to ease the transition from lower-division calculus courses to upper-division courses in linear and abstract algebra, real and complex analysis, number theory, topology, combinatorics, and so on. Without such a "bridge" course, most upper division instructors feel the need to start their courses with the rudiments of logic, set theory, equivalence relations, and other basic mathematical raw materials before getting on with the subject at hand. Students who are new to higher mathematics are often startled to discover that mathematics is a subject of ideas, and not just formulaic rituals, and that they are now expected to understand and create mathematical proofs. Mastery of an assortment of technical tricks may have carried the students through calculus, but it is no longer a guarantee of academic success. Students need experience in working with abstract ideas at a nontrivial level if they are to achieve the sophisticated blend of knowledge, disci pline, and creativity that we call "mathematical maturity. " I don't believe that "theorem-proving" can be taught any more than "question-answering" can be taught. Nevertheless, I have found that it is possible to guide stu dents gently into the process of mathematical proof in such a way that they become comfortable with the experience and begin asking them selves questions that will lead them in the right direction.

Proofs and Ideas

Download Proofs and Ideas PDF Online Free

Author :
Publisher : American Mathematical Society
ISBN 13 : 1470465140
Total Pages : 334 pages
Book Rating : 4.4/5 (74 download)

DOWNLOAD NOW!


Book Synopsis Proofs and Ideas by : B. Sethuraman

Download or read book Proofs and Ideas written by B. Sethuraman and published by American Mathematical Society. This book was released on 2021-12-02 with total page 334 pages. Available in PDF, EPUB and Kindle. Book excerpt: Proofs and Ideas serves as a gentle introduction to advanced mathematics for students who previously have not had extensive exposure to proofs. It is intended to ease the student's transition from algorithmic mathematics to the world of mathematics that is built around proofs and concepts. The spirit of the book is that the basic tools of abstract mathematics are best developed in context and that creativity and imagination are at the core of mathematics. So, while the book has chapters on statements and sets and functions and induction, the bulk of the book focuses on core mathematical ideas and on developing intuition. Along with chapters on elementary combinatorics and beginning number theory, this book contains introductory chapters on real analysis, group theory, and graph theory that serve as gentle first exposures to their respective areas. The book contains hundreds of exercises, both routine and non-routine. This book has been used for a transition to advanced mathematics courses at California State University, Northridge, as well as for a general education course on mathematical reasoning at Krea University, India.

How to Prove It

Download How to Prove It PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 0521861241
Total Pages : 401 pages
Book Rating : 4.5/5 (218 download)

DOWNLOAD NOW!


Book Synopsis How to Prove It by : Daniel J. Velleman

Download or read book How to Prove It written by Daniel J. Velleman and published by Cambridge University Press. This book was released on 2006-01-16 with total page 401 pages. Available in PDF, EPUB and Kindle. Book excerpt: Many students have trouble the first time they take a mathematics course in which proofs play a significant role. This new edition of Velleman's successful text will prepare students to make the transition from solving problems to proving theorems by teaching them the techniques needed to read and write proofs. The book begins with the basic concepts of logic and set theory, to familiarize students with the language of mathematics and how it is interpreted. These concepts are used as the basis for a step-by-step breakdown of the most important techniques used in constructing proofs. The author shows how complex proofs are built up from these smaller steps, using detailed 'scratch work' sections to expose the machinery of proofs about the natural numbers, relations, functions, and infinite sets. To give students the opportunity to construct their own proofs, this new edition contains over 200 new exercises, selected solutions, and an introduction to Proof Designer software. No background beyond standard high school mathematics is assumed. This book will be useful to anyone interested in logic and proofs: computer scientists, philosophers, linguists, and of course mathematicians.

Mathematical Reasoning

Download Mathematical Reasoning PDF Online Free

Author :
Publisher : Prentice Hall
ISBN 13 : 9780131877184
Total Pages : 0 pages
Book Rating : 4.8/5 (771 download)

DOWNLOAD NOW!


Book Synopsis Mathematical Reasoning by : Theodore A. Sundstrom

Download or read book Mathematical Reasoning written by Theodore A. Sundstrom and published by Prentice Hall. This book was released on 2007 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Focusing on the formal development of mathematics, this book shows readers how to read, understand, write, and construct mathematical proofs.Uses elementary number theory and congruence arithmetic throughout. Focuses on writing in mathematics. Reviews prior mathematical work with “Preview Activities” at the start of each section. Includes “Activities” throughout that relate to the material contained in each section. Focuses on Congruence Notation and Elementary Number Theorythroughout.For professionals in the sciences or engineering who need to brush up on their advanced mathematics skills. Mathematical Reasoning: Writing and Proof, 2/E Theodore Sundstrom

A Discrete Transition to Advanced Mathematics

Download A Discrete Transition to Advanced Mathematics PDF Online Free

Author :
Publisher : American Mathematical Society
ISBN 13 : 147047204X
Total Pages : 540 pages
Book Rating : 4.4/5 (74 download)

DOWNLOAD NOW!


Book Synopsis A Discrete Transition to Advanced Mathematics by : Bettina Richmond

Download or read book A Discrete Transition to Advanced Mathematics written by Bettina Richmond and published by American Mathematical Society. This book was released on 2023-08-25 with total page 540 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook bridges the gap between lower-division mathematics courses and advanced mathematical thinking. Featuring clear writing and appealing topics, the book introduces techniques for writing proofs in the context of discrete mathematics. By illuminating the concepts behind techniques, the authors create opportunities for readers to sharpen critical thinking skills and develop mathematical maturity. Beginning with an introduction to sets and logic, the book goes on to establish the basics of proof techniques. From here, chapters explore proofs in the context of number theory, combinatorics, functions and cardinality, and graph theory. A selection of extension topics concludes the book, including continued fractions, infinite arithmetic, and the interplay among Fibonacci numbers, Pascal's triangle, and the golden ratio. A Discrete Transition to Advanced Mathematics is suitable for an introduction to proof course or a course in discrete mathematics. Abundant examples and exercises invite readers to get involved, and the wealth of topics allows for course customization and further reading. This new edition has been expanded and modernized throughout. New features include a chapter on combinatorial geometry, a more in-depth treatment of counting, and over 365 new exercises.

Mathematical Writing

Download Mathematical Writing PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 9780883850633
Total Pages : 132 pages
Book Rating : 4.8/5 (56 download)

DOWNLOAD NOW!


Book Synopsis Mathematical Writing by : Donald E. Knuth

Download or read book Mathematical Writing written by Donald E. Knuth and published by Cambridge University Press. This book was released on 1989 with total page 132 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book will help those wishing to teach a course in technical writing, or who wish to write themselves.

Proofs and Fundamentals

Download Proofs and Fundamentals PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1461221307
Total Pages : 434 pages
Book Rating : 4.4/5 (612 download)

DOWNLOAD NOW!


Book Synopsis Proofs and Fundamentals by : Ethan D. Bloch

Download or read book Proofs and Fundamentals written by Ethan D. Bloch and published by Springer Science & Business Media. This book was released on 2013-12-01 with total page 434 pages. Available in PDF, EPUB and Kindle. Book excerpt: The aim of this book is to help students write mathematics better. Throughout it are large exercise sets well-integrated with the text and varying appropriately from easy to hard. Basic issues are treated, and attention is given to small issues like not placing a mathematical symbol directly after a punctuation mark. And it provides many examples of what students should think and what they should write and how these two are often not the same.

The Art of Proof

Download The Art of Proof PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1441970231
Total Pages : 182 pages
Book Rating : 4.4/5 (419 download)

DOWNLOAD NOW!


Book Synopsis The Art of Proof by : Matthias Beck

Download or read book The Art of Proof written by Matthias Beck and published by Springer Science & Business Media. This book was released on 2010-08-17 with total page 182 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Art of Proof is designed for a one-semester or two-quarter course. A typical student will have studied calculus (perhaps also linear algebra) with reasonable success. With an artful mixture of chatty style and interesting examples, the student's previous intuitive knowledge is placed on solid intellectual ground. The topics covered include: integers, induction, algorithms, real numbers, rational numbers, modular arithmetic, limits, and uncountable sets. Methods, such as axiom, theorem and proof, are taught while discussing the mathematics rather than in abstract isolation. The book ends with short essays on further topics suitable for seminar-style presentation by small teams of students, either in class or in a mathematics club setting. These include: continuity, cryptography, groups, complex numbers, ordinal number, and generating functions.

Discovering Group Theory

Download Discovering Group Theory PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1315405768
Total Pages : 286 pages
Book Rating : 4.3/5 (154 download)

DOWNLOAD NOW!


Book Synopsis Discovering Group Theory by : Tony Barnard

Download or read book Discovering Group Theory written by Tony Barnard and published by CRC Press. This book was released on 2016-12-19 with total page 286 pages. Available in PDF, EPUB and Kindle. Book excerpt: Discovering Group Theory: A Transition to Advanced Mathematics presents the usual material that is found in a first course on groups and then does a bit more. The book is intended for students who find the kind of reasoning in abstract mathematics courses unfamiliar and need extra support in this transition to advanced mathematics. The book gives a number of examples of groups and subgroups, including permutation groups, dihedral groups, and groups of integer residue classes. The book goes on to study cosets and finishes with the first isomorphism theorem. Very little is assumed as background knowledge on the part of the reader. Some facility in algebraic manipulation is required, and a working knowledge of some of the properties of integers, such as knowing how to factorize integers into prime factors. The book aims to help students with the transition from concrete to abstract mathematical thinking.

An Elementary Transition to Abstract Mathematics

Download An Elementary Transition to Abstract Mathematics PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1000701816
Total Pages : 293 pages
Book Rating : 4.0/5 (7 download)

DOWNLOAD NOW!


Book Synopsis An Elementary Transition to Abstract Mathematics by : Gove Effinger

Download or read book An Elementary Transition to Abstract Mathematics written by Gove Effinger and published by CRC Press. This book was released on 2019-11-05 with total page 293 pages. Available in PDF, EPUB and Kindle. Book excerpt: An Elementary Transition to Abstract Mathematics will help students move from introductory courses to those where rigor and proof play a much greater role. The text is organized into five basic parts: the first looks back on selected topics from pre-calculus and calculus, treating them more rigorously, and it covers various proof techniques; the second part covers induction, sets, functions, cardinality, complex numbers, permutations, and matrices; the third part introduces basic number theory including applications to cryptography; the fourth part introduces key objects from abstract algebra; and the final part focuses on polynomials. Features: The material is presented in many short chapters, so that one concept at a time can be absorbed by the student. Two "looking back" chapters at the outset (pre-calculus and calculus) are designed to start the student’s transition by working with familiar concepts. Many examples of every concept are given to make the material as concrete as possible and to emphasize the importance of searching for patterns. A conversational writing style is employed throughout in an effort to encourage active learning on the part of the student.

Proofs from THE BOOK

Download Proofs from THE BOOK PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 3662223430
Total Pages : 194 pages
Book Rating : 4.6/5 (622 download)

DOWNLOAD NOW!


Book Synopsis Proofs from THE BOOK by : Martin Aigner

Download or read book Proofs from THE BOOK written by Martin Aigner and published by Springer Science & Business Media. This book was released on 2013-06-29 with total page 194 pages. Available in PDF, EPUB and Kindle. Book excerpt: According to the great mathematician Paul Erdös, God maintains perfect mathematical proofs in The Book. This book presents the authors candidates for such "perfect proofs," those which contain brilliant ideas, clever connections, and wonderful observations, bringing new insight and surprising perspectives to problems from number theory, geometry, analysis, combinatorics, and graph theory. As a result, this book will be fun reading for anyone with an interest in mathematics.