Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
A Regularization Approach For Estimation And Variable Selection In High Dimensional Regression
Download A Regularization Approach For Estimation And Variable Selection In High Dimensional Regression full books in PDF, epub, and Kindle. Read online A Regularization Approach For Estimation And Variable Selection In High Dimensional Regression ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis Statistical Learning with Sparsity by : Trevor Hastie
Download or read book Statistical Learning with Sparsity written by Trevor Hastie and published by CRC Press. This book was released on 2015-05-07 with total page 354 pages. Available in PDF, EPUB and Kindle. Book excerpt: Discover New Methods for Dealing with High-Dimensional DataA sparse statistical model has only a small number of nonzero parameters or weights; therefore, it is much easier to estimate and interpret than a dense model. Statistical Learning with Sparsity: The Lasso and Generalizations presents methods that exploit sparsity to help recover the underl
Book Synopsis High-dimensional Data Analysis by : Tony Cai;Xiaotong Shen
Download or read book High-dimensional Data Analysis written by Tony Cai;Xiaotong Shen and published by . This book was released on with total page 318 pages. Available in PDF, EPUB and Kindle. Book excerpt: Over the last few years, significant developments have been taking place in highdimensional data analysis, driven primarily by a wide range of applications in many fields such as genomics and signal processing. In particular, substantial advances have been made in the areas of feature selection, covariance estimation, classification and regression. This book intends to examine important issues arising from highdimensional data analysis to explore key ideas for statistical inference and prediction. It is structured around topics on multiple hypothesis testing, feature selection, regression, cla.
Book Synopsis Statistics for High-Dimensional Data by : Peter Bühlmann
Download or read book Statistics for High-Dimensional Data written by Peter Bühlmann and published by Springer Science & Business Media. This book was released on 2011-06-08 with total page 568 pages. Available in PDF, EPUB and Kindle. Book excerpt: Modern statistics deals with large and complex data sets, and consequently with models containing a large number of parameters. This book presents a detailed account of recently developed approaches, including the Lasso and versions of it for various models, boosting methods, undirected graphical modeling, and procedures controlling false positive selections. A special characteristic of the book is that it contains comprehensive mathematical theory on high-dimensional statistics combined with methodology, algorithms and illustrations with real data examples. This in-depth approach highlights the methods’ great potential and practical applicability in a variety of settings. As such, it is a valuable resource for researchers, graduate students and experts in statistics, applied mathematics and computer science.
Book Synopsis Advanced Mean Field Methods by : Manfred Opper
Download or read book Advanced Mean Field Methods written by Manfred Opper and published by MIT Press. This book was released on 2001 with total page 300 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book covers the theoretical foundations of advanced mean field methods, explores the relation between the different approaches, examines the quality of the approximation obtained, and demonstrates their application to various areas of probabilistic modeling. A major problem in modern probabilistic modeling is the huge computational complexity involved in typical calculations with multivariate probability distributions when the number of random variables is large. Because exact computations are infeasible in such cases and Monte Carlo sampling techniques may reach their limits, there is a need for methods that allow for efficient approximate computations. One of the simplest approximations is based on the mean field method, which has a long history in statistical physics. The method is widely used, particularly in the growing field of graphical models. Researchers from disciplines such as statistical physics, computer science, and mathematical statistics are studying ways to improve this and related methods and are exploring novel application areas. Leading approaches include the variational approach, which goes beyond factorizable distributions to achieve systematic improvements; the TAP (Thouless-Anderson-Palmer) approach, which incorporates correlations by including effective reaction terms in the mean field theory; and the more general methods of graphical models. Bringing together ideas and techniques from these diverse disciplines, this book covers the theoretical foundations of advanced mean field methods, explores the relation between the different approaches, examines the quality of the approximation obtained, and demonstrates their application to various areas of probabilistic modeling.
Book Synopsis Quantile Regression by : Cristina Davino
Download or read book Quantile Regression written by Cristina Davino and published by John Wiley & Sons. This book was released on 2013-12-31 with total page 288 pages. Available in PDF, EPUB and Kindle. Book excerpt: A guide to the implementation and interpretation of Quantile Regression models This book explores the theory and numerous applications of quantile regression, offering empirical data analysis as well as the software tools to implement the methods. The main focus of this book is to provide the reader with a comprehensive description of the main issues concerning quantile regression; these include basic modeling, geometrical interpretation, estimation and inference for quantile regression, as well as issues on validity of the model, diagnostic tools. Each methodological aspect is explored and followed by applications using real data. Quantile Regression: Presents a complete treatment of quantile regression methods, including, estimation, inference issues and application of methods. Delivers a balance between methodolgy and application Offers an overview of the recent developments in the quantile regression framework and why to use quantile regression in a variety of areas such as economics, finance and computing. Features a supporting website (www.wiley.com/go/quantile_regression) hosting datasets along with R, Stata and SAS software code. Researchers and PhD students in the field of statistics, economics, econometrics, social and environmental science and chemistry will benefit from this book.
Book Synopsis Statistical and Computational Methods for Microbiome Multi-Omics Data by : Himel Mallick
Download or read book Statistical and Computational Methods for Microbiome Multi-Omics Data written by Himel Mallick and published by Frontiers Media SA. This book was released on 2020-11-19 with total page 170 pages. Available in PDF, EPUB and Kindle. Book excerpt: This eBook is a collection of articles from a Frontiers Research Topic. Frontiers Research Topics are very popular trademarks of the Frontiers Journals Series: they are collections of at least ten articles, all centered on a particular subject. With their unique mix of varied contributions from Original Research to Review Articles, Frontiers Research Topics unify the most influential researchers, the latest key findings and historical advances in a hot research area! Find out more on how to host your own Frontiers Research Topic or contribute to one as an author by contacting the Frontiers Editorial Office: frontiersin.org/about/contact.
Book Synopsis Big and Complex Data Analysis by : S. Ejaz Ahmed
Download or read book Big and Complex Data Analysis written by S. Ejaz Ahmed and published by Springer. This book was released on 2017-03-21 with total page 390 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume conveys some of the surprises, puzzles and success stories in high-dimensional and complex data analysis and related fields. Its peer-reviewed contributions showcase recent advances in variable selection, estimation and prediction strategies for a host of useful models, as well as essential new developments in the field. The continued and rapid advancement of modern technology now allows scientists to collect data of increasingly unprecedented size and complexity. Examples include epigenomic data, genomic data, proteomic data, high-resolution image data, high-frequency financial data, functional and longitudinal data, and network data. Simultaneous variable selection and estimation is one of the key statistical problems involved in analyzing such big and complex data. The purpose of this book is to stimulate research and foster interaction between researchers in the area of high-dimensional data analysis. More concretely, its goals are to: 1) highlight and expand the breadth of existing methods in big data and high-dimensional data analysis and their potential for the advancement of both the mathematical and statistical sciences; 2) identify important directions for future research in the theory of regularization methods, in algorithmic development, and in methodologies for different application areas; and 3) facilitate collaboration between theoretical and subject-specific researchers.
Book Synopsis Partially Linear Models by : Wolfgang Härdle
Download or read book Partially Linear Models written by Wolfgang Härdle and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 210 pages. Available in PDF, EPUB and Kindle. Book excerpt: In the last ten years, there has been increasing interest and activity in the general area of partially linear regression smoothing in statistics. Many methods and techniques have been proposed and studied. This monograph hopes to bring an up-to-date presentation of the state of the art of partially linear regression techniques. The emphasis is on methodologies rather than on the theory, with a particular focus on applications of partially linear regression techniques to various statistical problems. These problems include least squares regression, asymptotically efficient estimation, bootstrap resampling, censored data analysis, linear measurement error models, nonlinear measurement models, nonlinear and nonparametric time series models.
Book Synopsis Proceedings of the Thirteenth International Conference on Management Science and Engineering Management by : Jiuping Xu
Download or read book Proceedings of the Thirteenth International Conference on Management Science and Engineering Management written by Jiuping Xu and published by Springer. This book was released on 2019-06-19 with total page 837 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book gathers the proceedings of the 13th International Conference on Management Science and Engineering Management (ICMSEM 2019), which was held at Brock University, Ontario, Canada on August 5–8, 2019. Exploring the latest ideas and pioneering research achievements in management science and engineering management, the respective contributions highlight both theoretical and practical studies on management science and computing methodologies, and present advanced management concepts and computing technologies for decision-making problems involving large, uncertain and unstructured data. Accordingly, the proceedings offer researchers and practitioners in related fields an essential update, as well as a source of new research directions.
Book Synopsis Handbook of Bayesian Variable Selection by : Mahlet G. Tadesse
Download or read book Handbook of Bayesian Variable Selection written by Mahlet G. Tadesse and published by CRC Press. This book was released on 2021-12-24 with total page 762 pages. Available in PDF, EPUB and Kindle. Book excerpt: Bayesian variable selection has experienced substantial developments over the past 30 years with the proliferation of large data sets. Identifying relevant variables to include in a model allows simpler interpretation, avoids overfitting and multicollinearity, and can provide insights into the mechanisms underlying an observed phenomenon. Variable selection is especially important when the number of potential predictors is substantially larger than the sample size and sparsity can reasonably be assumed. The Handbook of Bayesian Variable Selection provides a comprehensive review of theoretical, methodological and computational aspects of Bayesian methods for variable selection. The topics covered include spike-and-slab priors, continuous shrinkage priors, Bayes factors, Bayesian model averaging, partitioning methods, as well as variable selection in decision trees and edge selection in graphical models. The handbook targets graduate students and established researchers who seek to understand the latest developments in the field. It also provides a valuable reference for all interested in applying existing methods and/or pursuing methodological extensions. Features: Provides a comprehensive review of methods and applications of Bayesian variable selection. Divided into four parts: Spike-and-Slab Priors; Continuous Shrinkage Priors; Extensions to various Modeling; Other Approaches to Bayesian Variable Selection. Covers theoretical and methodological aspects, as well as worked out examples with R code provided in the online supplement. Includes contributions by experts in the field. Supported by a website with code, data, and other supplementary material
Book Synopsis Fundamentals of High-Dimensional Statistics by : Johannes Lederer
Download or read book Fundamentals of High-Dimensional Statistics written by Johannes Lederer and published by Springer Nature. This book was released on 2021-11-16 with total page 355 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook provides a step-by-step introduction to the tools and principles of high-dimensional statistics. Each chapter is complemented by numerous exercises, many of them with detailed solutions, and computer labs in R that convey valuable practical insights. The book covers the theory and practice of high-dimensional linear regression, graphical models, and inference, ensuring readers have a smooth start in the field. It also offers suggestions for further reading. Given its scope, the textbook is intended for beginning graduate and advanced undergraduate students in statistics, biostatistics, and bioinformatics, though it will be equally useful to a broader audience.
Book Synopsis Post-Shrinkage Strategies in Statistical and Machine Learning for High Dimensional Data by : Syed Ejaz Ahmed
Download or read book Post-Shrinkage Strategies in Statistical and Machine Learning for High Dimensional Data written by Syed Ejaz Ahmed and published by CRC Press. This book was released on 2023-05-25 with total page 409 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents some post-estimation and predictions strategies for the host of useful statistical models with applications in data science. It combines statistical learning and machine learning techniques in a unique and optimal way. It is well-known that machine learning methods are subject to many issues relating to bias, and consequently the mean squared error and prediction error may explode. For this reason, we suggest shrinkage strategies to control the bias by combining a submodel selected by a penalized method with a model with many features. Further, the suggested shrinkage methodology can be successfully implemented for high dimensional data analysis. Many researchers in statistics and medical sciences work with big data. They need to analyse this data through statistical modelling. Estimating the model parameters accurately is an important part of the data analysis. This book may be a repository for developing improve estimation strategies for statisticians. This book will help researchers and practitioners for their teaching and advanced research, and is an excellent textbook for advanced undergraduate and graduate courses involving shrinkage, statistical, and machine learning. The book succinctly reveals the bias inherited in machine learning method and successfully provides tools, tricks and tips to deal with the bias issue. Expertly sheds light on the fundamental reasoning for model selection and post estimation using shrinkage and related strategies. This presentation is fundamental, because shrinkage and other methods appropriate for model selection and estimation problems and there is a growing interest in this area to fill the gap between competitive strategies. Application of these strategies to real life data set from many walks of life. Analytical results are fully corroborated by numerical work and numerous worked examples are included in each chapter with numerous graphs for data visualization. The presentation and style of the book clearly makes it accessible to a broad audience. It offers rich, concise expositions of each strategy and clearly describes how to use each estimation strategy for the problem at hand. This book emphasizes that statistics/statisticians can play a dominant role in solving Big Data problems, and will put them on the precipice of scientific discovery. The book contributes novel methodologies for HDDA and will open a door for continued research in this hot area. The practical impact of the proposed work stems from wide applications. The developed computational packages will aid in analyzing a broad range of applications in many walks of life.
Book Synopsis Handbook of Big Data Analytics by : Wolfgang Karl Härdle
Download or read book Handbook of Big Data Analytics written by Wolfgang Karl Härdle and published by Springer. This book was released on 2018-07-20 with total page 532 pages. Available in PDF, EPUB and Kindle. Book excerpt: Addressing a broad range of big data analytics in cross-disciplinary applications, this essential handbook focuses on the statistical prospects offered by recent developments in this field. To do so, it covers statistical methods for high-dimensional problems, algorithmic designs, computation tools, analysis flows and the software-hardware co-designs that are needed to support insightful discoveries from big data. The book is primarily intended for statisticians, computer experts, engineers and application developers interested in using big data analytics with statistics. Readers should have a solid background in statistics and computer science.
Book Synopsis Statistical Foundations of Data Science by : Jianqing Fan
Download or read book Statistical Foundations of Data Science written by Jianqing Fan and published by CRC Press. This book was released on 2020-09-21 with total page 942 pages. Available in PDF, EPUB and Kindle. Book excerpt: Statistical Foundations of Data Science gives a thorough introduction to commonly used statistical models, contemporary statistical machine learning techniques and algorithms, along with their mathematical insights and statistical theories. It aims to serve as a graduate-level textbook and a research monograph on high-dimensional statistics, sparsity and covariance learning, machine learning, and statistical inference. It includes ample exercises that involve both theoretical studies as well as empirical applications. The book begins with an introduction to the stylized features of big data and their impacts on statistical analysis. It then introduces multiple linear regression and expands the techniques of model building via nonparametric regression and kernel tricks. It provides a comprehensive account on sparsity explorations and model selections for multiple regression, generalized linear models, quantile regression, robust regression, hazards regression, among others. High-dimensional inference is also thoroughly addressed and so is feature screening. The book also provides a comprehensive account on high-dimensional covariance estimation, learning latent factors and hidden structures, as well as their applications to statistical estimation, inference, prediction and machine learning problems. It also introduces thoroughly statistical machine learning theory and methods for classification, clustering, and prediction. These include CART, random forests, boosting, support vector machines, clustering algorithms, sparse PCA, and deep learning.
Book Synopsis Handbook of Bayesian Variable Selection by : Mahlet G. Tadesse
Download or read book Handbook of Bayesian Variable Selection written by Mahlet G. Tadesse and published by CRC Press. This book was released on 2021-12-24 with total page 491 pages. Available in PDF, EPUB and Kindle. Book excerpt: Bayesian variable selection has experienced substantial developments over the past 30 years with the proliferation of large data sets. Identifying relevant variables to include in a model allows simpler interpretation, avoids overfitting and multicollinearity, and can provide insights into the mechanisms underlying an observed phenomenon. Variable selection is especially important when the number of potential predictors is substantially larger than the sample size and sparsity can reasonably be assumed. The Handbook of Bayesian Variable Selection provides a comprehensive review of theoretical, methodological and computational aspects of Bayesian methods for variable selection. The topics covered include spike-and-slab priors, continuous shrinkage priors, Bayes factors, Bayesian model averaging, partitioning methods, as well as variable selection in decision trees and edge selection in graphical models. The handbook targets graduate students and established researchers who seek to understand the latest developments in the field. It also provides a valuable reference for all interested in applying existing methods and/or pursuing methodological extensions. Features: Provides a comprehensive review of methods and applications of Bayesian variable selection. Divided into four parts: Spike-and-Slab Priors; Continuous Shrinkage Priors; Extensions to various Modeling; Other Approaches to Bayesian Variable Selection. Covers theoretical and methodological aspects, as well as worked out examples with R code provided in the online supplement. Includes contributions by experts in the field. Supported by a website with code, data, and other supplementary material
Book Synopsis Resampling-Based Multiple Testing by : Peter H. Westfall
Download or read book Resampling-Based Multiple Testing written by Peter H. Westfall and published by John Wiley & Sons. This book was released on 1993-01-12 with total page 382 pages. Available in PDF, EPUB and Kindle. Book excerpt: Combines recent developments in resampling technology (including the bootstrap) with new methods for multiple testing that are easy to use, convenient to report and widely applicable. Software from SAS Institute is available to execute many of the methods and programming is straightforward for other applications. Explains how to summarize results using adjusted p-values which do not necessitate cumbersome table look-ups. Demonstrates how to incorporate logical constraints among hypotheses, further improving power.
Book Synopsis Introduction to High-Dimensional Statistics by : Christophe Giraud
Download or read book Introduction to High-Dimensional Statistics written by Christophe Giraud and published by CRC Press. This book was released on 2021-08-25 with total page 410 pages. Available in PDF, EPUB and Kindle. Book excerpt: Praise for the first edition: "[This book] succeeds singularly at providing a structured introduction to this active field of research. ... it is arguably the most accessible overview yet published of the mathematical ideas and principles that one needs to master to enter the field of high-dimensional statistics. ... recommended to anyone interested in the main results of current research in high-dimensional statistics as well as anyone interested in acquiring the core mathematical skills to enter this area of research." —Journal of the American Statistical Association Introduction to High-Dimensional Statistics, Second Edition preserves the philosophy of the first edition: to be a concise guide for students and researchers discovering the area and interested in the mathematics involved. The main concepts and ideas are presented in simple settings, avoiding thereby unessential technicalities. High-dimensional statistics is a fast-evolving field, and much progress has been made on a large variety of topics, providing new insights and methods. Offering a succinct presentation of the mathematical foundations of high-dimensional statistics, this new edition: Offers revised chapters from the previous edition, with the inclusion of many additional materials on some important topics, including compress sensing, estimation with convex constraints, the slope estimator, simultaneously low-rank and row-sparse linear regression, or aggregation of a continuous set of estimators. Introduces three new chapters on iterative algorithms, clustering, and minimax lower bounds. Provides enhanced appendices, minimax lower-bounds mainly with the addition of the Davis-Kahan perturbation bound and of two simple versions of the Hanson-Wright concentration inequality. Covers cutting-edge statistical methods including model selection, sparsity and the Lasso, iterative hard thresholding, aggregation, support vector machines, and learning theory. Provides detailed exercises at the end of every chapter with collaborative solutions on a wiki site. Illustrates concepts with simple but clear practical examples.