Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
A Primer Of Calculus
Download A Primer Of Calculus full books in PDF, epub, and Kindle. Read online A Primer Of Calculus ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis The Calculus Primer by : William L. Schaaf
Download or read book The Calculus Primer written by William L. Schaaf and published by Courier Corporation. This book was released on 2014-03-05 with total page 434 pages. Available in PDF, EPUB and Kindle. Book excerpt: Comprehensive but concise, this introduction to differential and integral calculus covers all the topics usually included in a first course. The straightforward development places less emphasis on mathematical rigor, and the informal manner of presentation sets students at ease. Many carefully worked-out examples illuminate the text, in addition to numerous diagrams, problems, and answers. Bearing the needs of beginners constantly in mind, the treatment covers all the basic concepts of calculus: functions, derivatives, differentiation of algebraic and transcendental functions, partial differentiation, indeterminate forms, general and special methods of integration, the definite integral, partial integration, and other fundamentals. Ample exercises permit students to test their grasp of subjects before moving forward, making this volume appropriate not only for classroom use but also for review and home study.
Book Synopsis A Primer on the Calculus of Variations and Optimal Control Theory by : Mike Mesterton-Gibbons
Download or read book A Primer on the Calculus of Variations and Optimal Control Theory written by Mike Mesterton-Gibbons and published by American Mathematical Soc.. This book was released on 2009 with total page 274 pages. Available in PDF, EPUB and Kindle. Book excerpt: The calculus of variations is used to find functions that optimize quantities expressed in terms of integrals. Optimal control theory seeks to find functions that minimize cost integrals for systems described by differential equations. This book is an introduction to both the classical theory of the calculus of variations and the more modern developments of optimal control theory from the perspective of an applied mathematician. It focuses on understanding concepts and how to apply them. The range of potential applications is broad: the calculus of variations and optimal control theory have been widely used in numerous ways in biology, criminology, economics, engineering, finance, management science, and physics. Applications described in this book include cancer chemotherapy, navigational control, and renewable resource harvesting. The prerequisites for the book are modest: the standard calculus sequence, a first course on ordinary differential equations, and some facility with the use of mathematical software. It is suitable for an undergraduate or beginning graduate course, or for self study. It provides excellent preparation for more advanced books and courses on the calculus of variations and optimal control theory.
Book Synopsis Prof. E. McSquared's Calculus Primer by : Howard Swann
Download or read book Prof. E. McSquared's Calculus Primer written by Howard Swann and published by Courier Dover Publications. This book was released on 2016-01-20 with total page 267 pages. Available in PDF, EPUB and Kindle. Book excerpt: The first calculus comic book, this unique primer requires only a familiarity with high school algebra and a sense of humor. "Highly recommended." — The Times (London) Educational Supplement. 1989 edition.
Book Synopsis A Primer of Infinitesimal Analysis by : John L. Bell
Download or read book A Primer of Infinitesimal Analysis written by John L. Bell and published by Cambridge University Press. This book was released on 2008-04-07 with total page 7 pages. Available in PDF, EPUB and Kindle. Book excerpt: A rigorous, axiomatically formulated presentation of the 'zero-square', or 'nilpotent' infinitesimal.
Book Synopsis A Primer of Real Functions by : Ralph P. Boas (Jr.)
Download or read book A Primer of Real Functions written by Ralph P. Boas (Jr.) and published by . This book was released on 1972 with total page 196 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis A Primer for the Mathematics of Financial Engineering by : Dan Stefanica
Download or read book A Primer for the Mathematics of Financial Engineering written by Dan Stefanica and published by . This book was released on 2011 with total page 332 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis A Primer of Abstract Mathematics by : Robert B. Ash
Download or read book A Primer of Abstract Mathematics written by Robert B. Ash and published by American Mathematical Soc.. This book was released on 2020-03-02 with total page 193 pages. Available in PDF, EPUB and Kindle. Book excerpt: The purpose of this book is to prepare the reader for coping with abstract mathematics. The intended audience is both students taking a first course in abstract algebra who feel the need to strengthen their background and those from a more applied background who need some experience in dealing with abstract ideas. Learning any area of abstract mathematics requires not only ability to write formally but also to think intuitively about what is going on and to describe that process clearly and cogently in ordinary English. Ash tries to aid intuition by keeping proofs short and as informal as possible and using concrete examples as illustration. Thus, it is an ideal textbook for an audience with limited experience in formalism and abstraction. A number of expository innovations are included, for example, an informal development of set theory which teaches students all the basic results for algebra in one chapter.
Book Synopsis A Primer of Lebesgue Integration by : H. S. Bear
Download or read book A Primer of Lebesgue Integration written by H. S. Bear and published by Academic Press. This book was released on 2002 with total page 184 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Lebesgue integral is now standard for both applications and advanced mathematics. This books starts with a review of the familiar calculus integral and then constructs the Lebesgue integral from the ground up using the same ideas. A Primer of Lebesgue Integration has been used successfully both in the classroom and for individual study. Bear presents a clear and simple introduction for those intent on further study in higher mathematics. Additionally, this book serves as a refresher providing new insight for those in the field. The author writes with an engaging, commonsense style that appeals to readers at all levels.
Book Synopsis 3D Math Primer for Graphics and Game Development, 2nd Edition by : Fletcher Dunn
Download or read book 3D Math Primer for Graphics and Game Development, 2nd Edition written by Fletcher Dunn and published by CRC Press. This book was released on 2011-11-02 with total page 848 pages. Available in PDF, EPUB and Kindle. Book excerpt: This engaging book presents the essential mathematics needed to describe, simulate, and render a 3D world. Reflecting both academic and in-the-trenches practical experience, the authors teach you how to describe objects and their positions, orientations, and trajectories in 3D using mathematics. The text provides an introduction to mathematics for game designers, including the fundamentals of coordinate spaces, vectors, and matrices. It also covers orientation in three dimensions, calculus and dynamics, graphics, and parametric curves.
Book Synopsis Calculus of Variations by : Charles R. MacCluer
Download or read book Calculus of Variations written by Charles R. MacCluer and published by Courier Corporation. This book was released on 2013-05-20 with total page 274 pages. Available in PDF, EPUB and Kindle. Book excerpt: First truly up-to-date treatment offers a simple introduction to optimal control, linear-quadratic control design, and more. Broad perspective features numerous exercises, hints, outlines, and appendixes, including a practical discussion of MATLAB. 2005 edition.
Book Synopsis Primer of Modern Analysis by : K.T. Smith
Download or read book Primer of Modern Analysis written by K.T. Smith and published by Springer. This book was released on 1983-08-29 with total page 446 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book discusses some of the first principles of modern analysis. I t can be used for courses at several levels, depending upon the background and ability of the students. It was written on the premise that today's good students have unexpected enthusiasm and nerve. When hard work is put to them, they work harder and ask for more. The honors course (at the University of Wisconsin) which inspired this book was, I think, more fun than the book itself. And better. But then there is acting in teaching, and a typewriter is a poor substitute for an audience. The spontaneous, creative disorder that characterizes an exciting course becomes silly in a book. To write, one must cut and dry. Yet, I hope enough of the spontaneity, enough of the spirit of that course, is left to enable those using the book to create exciting courses of their own. Exercises in this book are not designed for drill. They are designed to clarify the meanings of the theorems, to force an understanding of the proofs, and to call attention to points in a proof that might otherwise be overlooked. The exercises, therefore, are a real part of the theory, not a collection of side issues, and as such nearly all of them are to be done. Some drill is, of course, necessary, particularly in the calculation of integrals.
Book Synopsis Principles of Mathematics by : Vladimir Lepetic
Download or read book Principles of Mathematics written by Vladimir Lepetic and published by John Wiley & Sons. This book was released on 2015-11-30 with total page 672 pages. Available in PDF, EPUB and Kindle. Book excerpt: Presents a uniquely balanced approach that bridges introductory and advanced topics in modern mathematics An accessible treatment of the fundamentals of modern mathematics, Principles of Mathematics: A Primer provides a unique approach to introductory andadvanced mathematical topics. The book features six main subjects, whichcan be studied independently or in conjunction with each other including: settheory; mathematical logic; proof theory; group theory; theory of functions; andlinear algebra. The author begins with comprehensive coverage of the necessary building blocks in mathematics and emphasizes the need to think abstractly and develop an appreciation for mathematical thinking. Maintaining a useful balance of introductory coverage and mathematical rigor, Principles of Mathematics: A Primer features: Detailed explanations of important theorems and their applications Hundreds of completely solved problems throughout each chapter Numerous exercises at the end of each chapter to encourage further exploration Discussions of interesting and provocative issues that spark readers’ curiosity and facilitate a better understanding and appreciation of the field of mathematics Principles of Mathematics: A Primer is an ideal textbook for upper-undergraduate courses in the foundations of mathematics and mathematical logic as well as for graduate-level courses related to physics, engineering, and computer science. The book is also a useful reference for readers interested in pursuing careers in mathematics and the sciences.
Book Synopsis Infinitesimal Calculus by : James M. Henle
Download or read book Infinitesimal Calculus written by James M. Henle and published by Courier Corporation. This book was released on 2014-01-15 with total page 146 pages. Available in PDF, EPUB and Kindle. Book excerpt: Introducing calculus at the basic level, this text covers hyperreal numbers and hyperreal line, continuous functions, integral and differential calculus, fundamental theorem, infinite sequences and series, infinite polynomials, more. 1979 edition.
Book Synopsis A Mathematical Primer for Social Statistics by : John Fox
Download or read book A Mathematical Primer for Social Statistics written by John Fox and published by SAGE Publications. This book was released on 2021-01-11 with total page 199 pages. Available in PDF, EPUB and Kindle. Book excerpt: A Mathematical Primer for Social Statistics, Second Edition presents mathematics central to learning and understanding statistical methods beyond the introductory level: the basic "language" of matrices and linear algebra and its visual representation, vector geometry; differential and integral calculus; probability theory; common probability distributions; statistical estimation and inference, including likelihood-based and Bayesian methods. The volume concludes by applying mathematical concepts and operations to a familiar case, linear least-squares regression. The Second Edition pays more attention to visualization, including the elliptical geometry of quadratic forms and its application to statistics. It also covers some new topics, such as an introduction to Markov-Chain Monte Carlo methods, which are important in modern Bayesian statistics. A companion website includes materials that enable readers to use the R statistical computing environment to reproduce and explore computations and visualizations presented in the text. The book is an excellent companion to a "math camp" or a course designed to provide foundational mathematics needed to understand relatively advanced statistical methods.
Book Synopsis A Mathematical Primer for Social Statistics by : John Fox
Download or read book A Mathematical Primer for Social Statistics written by John Fox and published by SAGE. This book was released on 2009 with total page 185 pages. Available in PDF, EPUB and Kindle. Book excerpt: The ideal primer for students and researchers across the social sciences who wish to master the necessary maths in order to pursue studies involving advanced statistical methods
Book Synopsis A Primer of Real Analytic Functions by : KRANTZ
Download or read book A Primer of Real Analytic Functions written by KRANTZ and published by Birkhäuser. This book was released on 2013-03-09 with total page 190 pages. Available in PDF, EPUB and Kindle. Book excerpt: The subject of real analytic functions is one of the oldest in mathe matical analysis. Today it is encountered early in ones mathematical training: the first taste usually comes in calculus. While most work ing mathematicians use real analytic functions from time to time in their work, the vast lore of real analytic functions remains obscure and buried in the literature. It is remarkable that the most accessible treatment of Puiseux's theorem is in Lefschetz's quite old Algebraic Geometry, that the clearest discussion of resolution of singularities for real analytic manifolds is in a book review by Michael Atiyah, that there is no comprehensive discussion in print of the embedding prob lem for real analytic manifolds. We have had occasion in our collaborative research to become ac quainted with both the history and the scope of the theory of real analytic functions. It seems both appropriate and timely for us to gather together this information in a single volume. The material presented here is of three kinds. The elementary topics, covered in Chapter 1, are presented in great detail. Even results like a real ana lytic inverse function theorem are difficult to find in the literature, and we take pains here to present such topics carefully. Topics of middling difficulty, such as separate real analyticity, Puiseux series, the FBI transform, and related ideas (Chapters 2-4), are covered thoroughly but rather more briskly.
Book Synopsis Fundamentals of Tensor Calculus for Engineers with a Primer on Smooth Manifolds by : Uwe Mühlich
Download or read book Fundamentals of Tensor Calculus for Engineers with a Primer on Smooth Manifolds written by Uwe Mühlich and published by Springer. This book was released on 2017-04-18 with total page 134 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents the fundamentals of modern tensor calculus for students in engineering and applied physics, emphasizing those aspects that are crucial for applying tensor calculus safely in Euclidian space and for grasping the very essence of the smooth manifold concept. After introducing the subject, it provides a brief exposition on point set topology to familiarize readers with the subject, especially with those topics required in later chapters. It then describes the finite dimensional real vector space and its dual, focusing on the usefulness of the latter for encoding duality concepts in physics. Moreover, it introduces tensors as objects that encode linear mappings and discusses affine and Euclidean spaces. Tensor analysis is explored first in Euclidean space, starting from a generalization of the concept of differentiability and proceeding towards concepts such as directional derivative, covariant derivative and integration based on differential forms. The final chapter addresses the role of smooth manifolds in modeling spaces other than Euclidean space, particularly the concepts of smooth atlas and tangent space, which are crucial to understanding the topic. Two of the most important concepts, namely the tangent bundle and the Lie derivative, are subsequently worked out.