Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
A Numerical Method For The Time Dependent Transport Equation Classic Reprint
Download A Numerical Method For The Time Dependent Transport Equation Classic Reprint full books in PDF, epub, and Kindle. Read online A Numerical Method For The Time Dependent Transport Equation Classic Reprint ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis Numerical Solution of Time-Dependent Advection-Diffusion-Reaction Equations by : Willem Hundsdorfer
Download or read book Numerical Solution of Time-Dependent Advection-Diffusion-Reaction Equations written by Willem Hundsdorfer and published by Springer Science & Business Media. This book was released on 2013-04-17 with total page 479 pages. Available in PDF, EPUB and Kindle. Book excerpt: Unique book on Reaction-Advection-Diffusion problems
Book Synopsis Finite Difference Methods for Ordinary and Partial Differential Equations by : Randall J. LeVeque
Download or read book Finite Difference Methods for Ordinary and Partial Differential Equations written by Randall J. LeVeque and published by SIAM. This book was released on 2007-01-01 with total page 356 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book introduces finite difference methods for both ordinary differential equations (ODEs) and partial differential equations (PDEs) and discusses the similarities and differences between algorithm design and stability analysis for different types of equations. A unified view of stability theory for ODEs and PDEs is presented, and the interplay between ODE and PDE analysis is stressed. The text emphasizes standard classical methods, but several newer approaches also are introduced and are described in the context of simple motivating examples.
Book Synopsis The Mathematics of Diffusion by : John Crank
Download or read book The Mathematics of Diffusion written by John Crank and published by Oxford University Press. This book was released on 1979 with total page 428 pages. Available in PDF, EPUB and Kindle. Book excerpt: Though it incorporates much new material, this new edition preserves the general character of the book in providing a collection of solutions of the equations of diffusion and describing how these solutions may be obtained.
Book Synopsis Numerical Methods for Conservation Laws by : LEVEQUE
Download or read book Numerical Methods for Conservation Laws written by LEVEQUE and published by Birkhäuser. This book was released on 2013-11-11 with total page 221 pages. Available in PDF, EPUB and Kindle. Book excerpt: These notes developed from a course on the numerical solution of conservation laws first taught at the University of Washington in the fall of 1988 and then at ETH during the following spring. The overall emphasis is on studying the mathematical tools that are essential in de veloping, analyzing, and successfully using numerical methods for nonlinear systems of conservation laws, particularly for problems involving shock waves. A reasonable un derstanding of the mathematical structure of these equations and their solutions is first required, and Part I of these notes deals with this theory. Part II deals more directly with numerical methods, again with the emphasis on general tools that are of broad use. I have stressed the underlying ideas used in various classes of methods rather than present ing the most sophisticated methods in great detail. My aim was to provide a sufficient background that students could then approach the current research literature with the necessary tools and understanding. vVithout the wonders of TeX and LaTeX, these notes would never have been put together. The professional-looking results perhaps obscure the fact that these are indeed lecture notes. Some sections have been reworked several times by now, but others are still preliminary. I can only hope that the errors are not too blatant. Moreover, the breadth and depth of coverage was limited by the length of these courses, and some parts are rather sketchy.
Book Synopsis Numerical Methods for Fluid Dynamics by : Dale R. Durran
Download or read book Numerical Methods for Fluid Dynamics written by Dale R. Durran and published by Springer Science & Business Media. This book was released on 2010-09-14 with total page 527 pages. Available in PDF, EPUB and Kindle. Book excerpt: This scholarly text provides an introduction to the numerical methods used to model partial differential equations, with focus on atmospheric and oceanic flows. The book covers both the essentials of building a numerical model and the more sophisticated techniques that are now available. Finite difference methods, spectral methods, finite element method, flux-corrected methods and TVC schemes are all discussed. Throughout, the author keeps to a middle ground between the theorem-proof formalism of a mathematical text and the highly empirical approach found in some engineering publications. The book establishes a concrete link between theory and practice using an extensive range of test problems to illustrate the theoretically derived properties of various methods. From the reviews: "...the books unquestionable advantage is the clarity and simplicity in presenting virtually all basic ideas and methods of numerical analysis currently actively used in geophysical fluid dynamics." Physics of Atmosphere and Ocean
Author : Publisher :World Scientific ISBN 13 : Total Pages :1131 pages Book Rating :4./5 ( download)
Download or read book written by and published by World Scientific. This book was released on with total page 1131 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis Highly Oscillatory Problems by : Bjorn Engquist
Download or read book Highly Oscillatory Problems written by Bjorn Engquist and published by Cambridge University Press. This book was released on 2009-07-02 with total page 254 pages. Available in PDF, EPUB and Kindle. Book excerpt: Review papers from experts in areas of active research into highly oscillatory problems, with an emphasis on computation.
Book Synopsis Modeling of Atmospheric Chemistry by : Guy P. Brasseur
Download or read book Modeling of Atmospheric Chemistry written by Guy P. Brasseur and published by Cambridge University Press. This book was released on 2017-06-19 with total page 631 pages. Available in PDF, EPUB and Kindle. Book excerpt: Mathematical modeling of atmospheric composition is a formidable scientific and computational challenge. This comprehensive presentation of the modeling methods used in atmospheric chemistry focuses on both theory and practice, from the fundamental principles behind models, through to their applications in interpreting observations. An encyclopaedic coverage of methods used in atmospheric modeling, including their advantages and disadvantages, makes this a one-stop resource with a large scope. Particular emphasis is given to the mathematical formulation of chemical, radiative, and aerosol processes; advection and turbulent transport; emission and deposition processes; as well as major chapters on model evaluation and inverse modeling. The modeling of atmospheric chemistry is an intrinsically interdisciplinary endeavour, bringing together meteorology, radiative transfer, physical chemistry and biogeochemistry, making the book of value to a broad readership. Introductory chapters and a review of the relevant mathematics make this book instantly accessible to graduate students and researchers in the atmospheric sciences.
Book Synopsis Multiphysics Modeling: Numerical Methods and Engineering Applications by : Qun Zhang
Download or read book Multiphysics Modeling: Numerical Methods and Engineering Applications written by Qun Zhang and published by Elsevier. This book was released on 2015-12-15 with total page 438 pages. Available in PDF, EPUB and Kindle. Book excerpt: Multiphysics Modeling: Numerical Methods and Engineering Applications: Tsinghua University Press Computational Mechanics Series describes the basic principles and methods for multiphysics modeling, covering related areas of physics such as structure mechanics, fluid dynamics, heat transfer, electromagnetic field, and noise. The book provides the latest information on basic numerical methods, also considering coupled problems spanning fluid-solid interaction, thermal-stress coupling, fluid-solid-thermal coupling, electromagnetic solid thermal fluid coupling, and structure-noise coupling. Users will find a comprehensive book that covers background theory, algorithms, key technologies, and applications for each coupling method. - Presents a wealth of multiphysics modeling methods, issues, and worked examples in a single volume - Provides a go-to resource for coupling and multiphysics problems - Covers the multiphysics details not touched upon in broader numerical methods references, including load transfer between physics, element level strong coupling, and interface strong coupling, amongst others - Discusses practical applications throughout and tackles real-life multiphysics problems across areas such as automotive, aerospace, and biomedical engineering
Book Synopsis Collected Reprints by : Southwest Fisheries Center (U.S.)
Download or read book Collected Reprints written by Southwest Fisheries Center (U.S.) and published by . This book was released on 1980 with total page 1074 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis Introduction to Computation and Modeling for Differential Equations by : Lennart Edsberg
Download or read book Introduction to Computation and Modeling for Differential Equations written by Lennart Edsberg and published by John Wiley & Sons. This book was released on 2013-06-05 with total page 177 pages. Available in PDF, EPUB and Kindle. Book excerpt: An introduction to scientific computing for differential equations Introduction to Computation and Modeling for Differential Equations provides a unified and integrated view of numerical analysis, mathematical modeling in applications, and programming to solve differential equations, which is essential in problem-solving across many disciplines, such as engineering, physics, and economics. This book successfully introduces readers to the subject through a unique "Five-M" approach: Modeling, Mathematics, Methods, MATLAB, and Multiphysics. This approach facilitates a thorough understanding of how models are created and preprocessed mathematically with scaling, classification, and approximation, and it also illustrates how a problem is solved numerically using the appropriate mathematical methods. The book's approach of solving a problem with mathematical, numerical, and programming tools is unique and covers a wide array of topics, from mathematical modeling to implementing a working computer program. The author utilizes the principles and applications of scientific computing to solve problems involving: Ordinary differential equations Numerical methods for Initial Value Problems (IVPs) Numerical methods for Boundary Value Problems (BVPs) Partial Differential Equations (PDEs) Numerical methods for parabolic, elliptic, and hyperbolic PDEs Mathematical modeling with differential equations Numerical solution Finite difference and finite element methods Real-world examples from scientific and engineering applications including mechanics, fluid dynamics, solid mechanics, chemical engineering, electromagnetic field theory, and control theory are solved through the use of MATLAB and the interactive scientific computing program Comsol Multiphysics. Numerous illustrations aid in the visualization of the solutions, and a related Web site features demonstrations, solutions to problems, MATLAB programs, and additional data. Introduction to Computation and Modeling for Differential Equations is an ideal text for courses in differential equations, ordinary differential equations, partial differential equations, and numerical methods at the upper-undergraduate and graduate levels. The book also serves as a valuable reference for researchers and practitioners in the fields of mathematics, engineering, and computer science who would like to refresh and revive their knowledge of the mathematical and numerical aspects as well as the applications of scientific computation.
Book Synopsis Numerical Methods by : George Em Karniadakis
Download or read book Numerical Methods written by George Em Karniadakis and published by Walter de Gruyter GmbH & Co KG. This book was released on 2019-04-15 with total page 360 pages. Available in PDF, EPUB and Kindle. Book excerpt: This multi-volume handbook is the most up-to-date and comprehensive reference work in the field of fractional calculus and its numerous applications. This third volume collects authoritative chapters covering several numerical aspects of fractional calculus, including time and space fractional derivatives, finite differences and finite elements, and spectral, meshless, and particle methods.
Book Synopsis Automated Solution of Differential Equations by the Finite Element Method by : Anders Logg
Download or read book Automated Solution of Differential Equations by the Finite Element Method written by Anders Logg and published by Springer Science & Business Media. This book was released on 2012-02-24 with total page 723 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is a tutorial written by researchers and developers behind the FEniCS Project and explores an advanced, expressive approach to the development of mathematical software. The presentation spans mathematical background, software design and the use of FEniCS in applications. Theoretical aspects are complemented with computer code which is available as free/open source software. The book begins with a special introductory tutorial for beginners. Following are chapters in Part I addressing fundamental aspects of the approach to automating the creation of finite element solvers. Chapters in Part II address the design and implementation of the FEnicS software. Chapters in Part III present the application of FEniCS to a wide range of applications, including fluid flow, solid mechanics, electromagnetics and geophysics.
Book Synopsis Computing Qualitatively Correct Approximations of Balance Laws by : Laurent Gosse
Download or read book Computing Qualitatively Correct Approximations of Balance Laws written by Laurent Gosse and published by Springer Science & Business Media. This book was released on 2013-03-30 with total page 346 pages. Available in PDF, EPUB and Kindle. Book excerpt: Substantial effort has been drawn for years onto the development of (possibly high-order) numerical techniques for the scalar homogeneous conservation law, an equation which is strongly dissipative in L1 thanks to shock wave formation. Such a dissipation property is generally lost when considering hyperbolic systems of conservation laws, or simply inhomogeneous scalar balance laws involving accretive or space-dependent source terms, because of complex wave interactions. An overall weaker dissipation can reveal intrinsic numerical weaknesses through specific nonlinear mechanisms: Hugoniot curves being deformed by local averaging steps in Godunov-type schemes, low-order errors propagating along expanding characteristics after having hit a discontinuity, exponential amplification of truncation errors in the presence of accretive source terms... This book aims at presenting rigorous derivations of different, sometimes called well-balanced, numerical schemes which succeed in reconciling high accuracy with a stronger robustness even in the aforementioned accretive contexts. It is divided into two parts: one dealing with hyperbolic systems of balance laws, such as arising from quasi-one dimensional nozzle flow computations, multiphase WKB approximation of linear Schrödinger equations, or gravitational Navier-Stokes systems. Stability results for viscosity solutions of onedimensional balance laws are sketched. The other being entirely devoted to the treatment of weakly nonlinear kinetic equations in the discrete ordinate approximation, such as the ones of radiative transfer, chemotaxis dynamics, semiconductor conduction, spray dynamics or linearized Boltzmann models. “Caseology” is one of the main techniques used in these derivations. Lagrangian techniques for filtration equations are evoked too. Two-dimensional methods are studied in the context of non-degenerate semiconductor models.
Book Synopsis Computational Methods in Transport by : Frank Graziani
Download or read book Computational Methods in Transport written by Frank Graziani and published by Springer Science & Business Media. This book was released on 2006-02-17 with total page 539 pages. Available in PDF, EPUB and Kindle. Book excerpt: Thereexistawiderangeofapplicationswhereasigni?cantfractionofthe- mentum and energy present in a physical problem is carried by the transport of particles. Depending on the speci?capplication, the particles involved may be photons, neutrons, neutrinos, or charged particles. Regardless of which phenomena is being described, at the heart of each application is the fact that a Boltzmann like transport equation has to be solved. The complexity, and hence expense, involved in solving the transport problem can be understood by realizing that the general solution to the 3D Boltzmann transport equation is in fact really seven dimensional: 3 spatial coordinates, 2 angles, 1 time, and 1 for speed or energy. Low-order appro- mations to the transport equation are frequently used due in part to physical justi?cation but many in cases, simply because a solution to the full tra- port problem is too computationally expensive. An example is the di?usion equation, which e?ectively drops the two angles in phase space by assuming that a linear representation in angle is adequate. Another approximation is the grey approximation, which drops the energy variable by averaging over it. If the grey approximation is applied to the di?usion equation, the expense of solving what amounts to the simplest possible description of transport is roughly equal to the cost of implicit computational ?uid dynamics. It is clear therefore, that for those application areas needing some form of transport, fast, accurate and robust transport algorithms can lead to an increase in overall code performance and a decrease in time to solution.
Book Synopsis Proceedings of the International Workshop on Frontiers of Theoretical Physics by : Fumihiko Sakata
Download or read book Proceedings of the International Workshop on Frontiers of Theoretical Physics written by Fumihiko Sakata and published by World Scientific. This book was released on 2001 with total page 294 pages. Available in PDF, EPUB and Kindle. Book excerpt: At the crossing of centuries, it is very important to review the main problems and research in theoretical physics. This was the purpose of the International Workshop on Frontiers of Theoretical Physics, allowing the interchange of ideas among people with different expertise.The proceedings can be divided into two parts: (1) general view talks about string, particle physics, nuclear physics, etc. given by Profs. T Yoneya, M Kobayazhi, A Sanda, Z Li and F Sakata; (2) research related to many important fields, such as quantum field theory, string theory, particle physics, condensed matter physics, nuclear physics and mathematical physics.
Book Synopsis Numerical Methods in Electromagnetics by : W.H.A. SCHILDERS
Download or read book Numerical Methods in Electromagnetics written by W.H.A. SCHILDERS and published by Elsevier. This book was released on 2005-04-04 with total page 930 pages. Available in PDF, EPUB and Kindle. Book excerpt: This special volume provides a broad overview and insight in the way numerical methods are being used to solve the wide variety of problems in the electronics industry. Furthermore its aim is to give researchers from other fields of application the opportunity to benefit from the results wich have been obtained in the electronics industry.* Complete survey of numerical methods used in the electronic industry* Each chapter is selfcontained* Presents state-of-the-art applications and methods* Internationally recognised authors