A Minicourse on Stochastic Partial Differential Equations

Download A Minicourse on Stochastic Partial Differential Equations PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 3540859934
Total Pages : 230 pages
Book Rating : 4.5/5 (48 download)

DOWNLOAD NOW!


Book Synopsis A Minicourse on Stochastic Partial Differential Equations by : Robert C. Dalang

Download or read book A Minicourse on Stochastic Partial Differential Equations written by Robert C. Dalang and published by Springer Science & Business Media. This book was released on 2009 with total page 230 pages. Available in PDF, EPUB and Kindle. Book excerpt: This title contains lectures that offer an introduction to modern topics in stochastic partial differential equations and bring together experts whose research is centered on the interface between Gaussian analysis, stochastic analysis, and stochastic PDEs.

Stochastic Climate Models

Download Stochastic Climate Models PDF Online Free

Author :
Publisher : Birkhäuser
ISBN 13 : 3034882874
Total Pages : 413 pages
Book Rating : 4.0/5 (348 download)

DOWNLOAD NOW!


Book Synopsis Stochastic Climate Models by : Peter Imkeller

Download or read book Stochastic Climate Models written by Peter Imkeller and published by Birkhäuser. This book was released on 2012-12-06 with total page 413 pages. Available in PDF, EPUB and Kindle. Book excerpt: A collection of articles written by mathematicians and physicists, designed to describe the state of the art in climate models with stochastic input. Mathematicians will benefit from a survey of simple models, while physicists will encounter mathematically relevant techniques at work.

Interest Rate Models: an Infinite Dimensional Stochastic Analysis Perspective

Download Interest Rate Models: an Infinite Dimensional Stochastic Analysis Perspective PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 3540270671
Total Pages : 236 pages
Book Rating : 4.5/5 (42 download)

DOWNLOAD NOW!


Book Synopsis Interest Rate Models: an Infinite Dimensional Stochastic Analysis Perspective by : René Carmona

Download or read book Interest Rate Models: an Infinite Dimensional Stochastic Analysis Perspective written by René Carmona and published by Springer Science & Business Media. This book was released on 2007-05-22 with total page 236 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents the mathematical issues that arise in modeling the interest rate term structure by casting the interest-rate models as stochastic evolution equations in infinite dimensions. The text includes a crash course on interest rates, a self-contained introduction to infinite dimensional stochastic analysis, and recent results in interest rate theory. From the reviews: "A wonderful book. The authors present some cutting-edge math." --WWW.RISKBOOK.COM

A Course on Rough Paths

Download A Course on Rough Paths PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3030415562
Total Pages : 354 pages
Book Rating : 4.0/5 (34 download)

DOWNLOAD NOW!


Book Synopsis A Course on Rough Paths by : Peter K. Friz

Download or read book A Course on Rough Paths written by Peter K. Friz and published by Springer Nature. This book was released on 2020-05-27 with total page 354 pages. Available in PDF, EPUB and Kindle. Book excerpt: With many updates and additional exercises, the second edition of this book continues to provide readers with a gentle introduction to rough path analysis and regularity structures, theories that have yielded many new insights into the analysis of stochastic differential equations, and, most recently, stochastic partial differential equations. Rough path analysis provides the means for constructing a pathwise solution theory for stochastic differential equations which, in many respects, behaves like the theory of deterministic differential equations and permits a clean break between analytical and probabilistic arguments. Together with the theory of regularity structures, it forms a robust toolbox, allowing the recovery of many classical results without having to rely on specific probabilistic properties such as adaptedness or the martingale property. Essentially self-contained, this textbook puts the emphasis on ideas and short arguments, rather than aiming for the strongest possible statements. A typical reader will have been exposed to upper undergraduate analysis and probability courses, with little more than Itô-integration against Brownian motion required for most of the text. From the reviews of the first edition: "Can easily be used as a support for a graduate course ... Presents in an accessible way the unique point of view of two experts who themselves have largely contributed to the theory" - Fabrice Baudouin in the Mathematical Reviews "It is easy to base a graduate course on rough paths on this ... A researcher who carefully works her way through all of the exercises will have a very good impression of the current state of the art" - Nicolas Perkowski in Zentralblatt MATH

Introduction to Malliavin Calculus

Download Introduction to Malliavin Calculus PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 1107039126
Total Pages : 249 pages
Book Rating : 4.1/5 (7 download)

DOWNLOAD NOW!


Book Synopsis Introduction to Malliavin Calculus by : David Nualart

Download or read book Introduction to Malliavin Calculus written by David Nualart and published by Cambridge University Press. This book was released on 2018-09-27 with total page 249 pages. Available in PDF, EPUB and Kindle. Book excerpt: A compact introduction to this active and powerful area of research, combining basic theory, core techniques, and recent applications.

Multiparameter Processes

Download Multiparameter Processes PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 0387216316
Total Pages : 590 pages
Book Rating : 4.3/5 (872 download)

DOWNLOAD NOW!


Book Synopsis Multiparameter Processes by : Davar Khoshnevisan

Download or read book Multiparameter Processes written by Davar Khoshnevisan and published by Springer Science & Business Media. This book was released on 2006-04-10 with total page 590 pages. Available in PDF, EPUB and Kindle. Book excerpt: Self-contained presentation: from elementary material to state-of-the-art research; Much of the theory in book-form for the first time; Connections are made between probability and other areas of mathematics, engineering and mathematical physics

An Introduction to Stochastic Differential Equations with Reflection

Download An Introduction to Stochastic Differential Equations with Reflection PDF Online Free

Author :
Publisher : Universitätsverlag Potsdam
ISBN 13 : 3869562978
Total Pages : 90 pages
Book Rating : 4.8/5 (695 download)

DOWNLOAD NOW!


Book Synopsis An Introduction to Stochastic Differential Equations with Reflection by : Andrey Pilipenko

Download or read book An Introduction to Stochastic Differential Equations with Reflection written by Andrey Pilipenko and published by Universitätsverlag Potsdam. This book was released on 2014 with total page 90 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Stochastic Partial Differential Equations: An Introduction

Download Stochastic Partial Differential Equations: An Introduction PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3319223542
Total Pages : 267 pages
Book Rating : 4.3/5 (192 download)

DOWNLOAD NOW!


Book Synopsis Stochastic Partial Differential Equations: An Introduction by : Wei Liu

Download or read book Stochastic Partial Differential Equations: An Introduction written by Wei Liu and published by Springer. This book was released on 2015-10-06 with total page 267 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides an introduction to the theory of stochastic partial differential equations (SPDEs) of evolutionary type. SPDEs are one of the main research directions in probability theory with several wide ranging applications. Many types of dynamics with stochastic influence in nature or man-made complex systems can be modelled by such equations. The theory of SPDEs is based both on the theory of deterministic partial differential equations, as well as on modern stochastic analysis. Whilst this volume mainly follows the ‘variational approach’, it also contains a short account on the ‘semigroup (or mild solution) approach’. In particular, the volume contains a complete presentation of the main existence and uniqueness results in the case of locally monotone coefficients. Various types of generalized coercivity conditions are shown to guarantee non-explosion, but also a systematic approach to treat SPDEs with explosion in finite time is developed. It is, so far, the only book where the latter and the ‘locally monotone case’ is presented in a detailed and complete way for SPDEs. The extension to this more general framework for SPDEs, for example, in comparison to the well-known case of globally monotone coefficients, substantially widens the applicability of the results.

Advanced Spatial Modeling with Stochastic Partial Differential Equations Using R and INLA

Download Advanced Spatial Modeling with Stochastic Partial Differential Equations Using R and INLA PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 0429629850
Total Pages : 284 pages
Book Rating : 4.4/5 (296 download)

DOWNLOAD NOW!


Book Synopsis Advanced Spatial Modeling with Stochastic Partial Differential Equations Using R and INLA by : Elias T. Krainski

Download or read book Advanced Spatial Modeling with Stochastic Partial Differential Equations Using R and INLA written by Elias T. Krainski and published by CRC Press. This book was released on 2018-12-07 with total page 284 pages. Available in PDF, EPUB and Kindle. Book excerpt: Modeling spatial and spatio-temporal continuous processes is an important and challenging problem in spatial statistics. Advanced Spatial Modeling with Stochastic Partial Differential Equations Using R and INLA describes in detail the stochastic partial differential equations (SPDE) approach for modeling continuous spatial processes with a Matérn covariance, which has been implemented using the integrated nested Laplace approximation (INLA) in the R-INLA package. Key concepts about modeling spatial processes and the SPDE approach are explained with examples using simulated data and real applications. This book has been authored by leading experts in spatial statistics, including the main developers of the INLA and SPDE methodologies and the R-INLA package. It also includes a wide range of applications: * Spatial and spatio-temporal models for continuous outcomes * Analysis of spatial and spatio-temporal point patterns * Coregionalization spatial and spatio-temporal models * Measurement error spatial models * Modeling preferential sampling * Spatial and spatio-temporal models with physical barriers * Survival analysis with spatial effects * Dynamic space-time regression * Spatial and spatio-temporal models for extremes * Hurdle models with spatial effects * Penalized Complexity priors for spatial models All the examples in the book are fully reproducible. Further information about this book, as well as the R code and datasets used, is available from the book website at http://www.r-inla.org/spde-book. The tools described in this book will be useful to researchers in many fields such as biostatistics, spatial statistics, environmental sciences, epidemiology, ecology and others. Graduate and Ph.D. students will also find this book and associated files a valuable resource to learn INLA and the SPDE approach for spatial modeling.

The Analysis of Fractional Differential Equations

Download The Analysis of Fractional Differential Equations PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3642145744
Total Pages : 251 pages
Book Rating : 4.6/5 (421 download)

DOWNLOAD NOW!


Book Synopsis The Analysis of Fractional Differential Equations by : Kai Diethelm

Download or read book The Analysis of Fractional Differential Equations written by Kai Diethelm and published by Springer. This book was released on 2010-08-18 with total page 251 pages. Available in PDF, EPUB and Kindle. Book excerpt: Fractional calculus was first developed by pure mathematicians in the middle of the 19th century. Some 100 years later, engineers and physicists have found applications for these concepts in their areas. However there has traditionally been little interaction between these two communities. In particular, typical mathematical works provide extensive findings on aspects with comparatively little significance in applications, and the engineering literature often lacks mathematical detail and precision. This book bridges the gap between the two communities. It concentrates on the class of fractional derivatives most important in applications, the Caputo operators, and provides a self-contained, thorough and mathematically rigorous study of their properties and of the corresponding differential equations. The text is a useful tool for mathematicians and researchers from the applied sciences alike. It can also be used as a basis for teaching graduate courses on fractional differential equations.

Stochastic Partial Differential Equations and Related Fields

Download Stochastic Partial Differential Equations and Related Fields PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3319749293
Total Pages : 565 pages
Book Rating : 4.3/5 (197 download)

DOWNLOAD NOW!


Book Synopsis Stochastic Partial Differential Equations and Related Fields by : Andreas Eberle

Download or read book Stochastic Partial Differential Equations and Related Fields written by Andreas Eberle and published by Springer. This book was released on 2018-07-03 with total page 565 pages. Available in PDF, EPUB and Kindle. Book excerpt: This Festschrift contains five research surveys and thirty-four shorter contributions by participants of the conference ''Stochastic Partial Differential Equations and Related Fields'' hosted by the Faculty of Mathematics at Bielefeld University, October 10–14, 2016. The conference, attended by more than 140 participants, including PostDocs and PhD students, was held both to honor Michael Röckner's contributions to the field on the occasion of his 60th birthday and to bring together leading scientists and young researchers to present the current state of the art and promising future developments. Each article introduces a well-described field related to Stochastic Partial Differential Equations and Stochastic Analysis in general. In particular, the longer surveys focus on Dirichlet forms and Potential theory, the analysis of Kolmogorov operators, Fokker–Planck equations in Hilbert spaces, the theory of variational solutions to stochastic partial differential equations, singular stochastic partial differential equations and their applications in mathematical physics, as well as on the theory of regularity structures and paracontrolled distributions. The numerous research surveys make the volume especially useful for graduate students and researchers who wish to start work in the above-mentioned areas, or who want to be informed about the current state of the art.

Stochastic Partial Differential Equations

Download Stochastic Partial Differential Equations PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3319586475
Total Pages : 517 pages
Book Rating : 4.3/5 (195 download)

DOWNLOAD NOW!


Book Synopsis Stochastic Partial Differential Equations by : Sergey V. Lototsky

Download or read book Stochastic Partial Differential Equations written by Sergey V. Lototsky and published by Springer. This book was released on 2017-07-06 with total page 517 pages. Available in PDF, EPUB and Kindle. Book excerpt: Taking readers with a basic knowledge of probability and real analysis to the frontiers of a very active research discipline, this textbook provides all the necessary background from functional analysis and the theory of PDEs. It covers the main types of equations (elliptic, hyperbolic and parabolic) and discusses different types of random forcing. The objective is to give the reader the necessary tools to understand the proofs of existing theorems about SPDEs (from other sources) and perhaps even to formulate and prove a few new ones. Most of the material could be covered in about 40 hours of lectures, as long as not too much time is spent on the general discussion of stochastic analysis in infinite dimensions. As the subject of SPDEs is currently making the transition from the research level to that of a graduate or even undergraduate course, the book attempts to present enough exercise material to fill potential exams and homework assignments. Exercises appear throughout and are usually directly connected to the material discussed at a particular place in the text. The questions usually ask to verify something, so that the reader already knows the answer and, if pressed for time, can move on. Accordingly, no solutions are provided, but there are often hints on how to proceed. The book will be of interest to everybody working in the area of stochastic analysis, from beginning graduate students to experts in the field.

From Lévy-Type Processes to Parabolic SPDEs

Download From Lévy-Type Processes to Parabolic SPDEs PDF Online Free

Author :
Publisher : Birkhäuser
ISBN 13 : 3319341200
Total Pages : 214 pages
Book Rating : 4.3/5 (193 download)

DOWNLOAD NOW!


Book Synopsis From Lévy-Type Processes to Parabolic SPDEs by : Davar Khoshnevisan

Download or read book From Lévy-Type Processes to Parabolic SPDEs written by Davar Khoshnevisan and published by Birkhäuser. This book was released on 2016-12-22 with total page 214 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume presents the lecture notes from two courses given by Davar Khoshnevisan and René Schilling, respectively, at the second Barcelona Summer School on Stochastic Analysis. René Schilling’s notes are an expanded version of his course on Lévy and Lévy-type processes, the purpose of which is two-fold: on the one hand, the course presents in detail selected properties of the Lévy processes, mainly as Markov processes, and their different constructions, eventually leading to the celebrated Lévy-Itô decomposition. On the other, it identifies the infinitesimal generator of the Lévy process as a pseudo-differential operator whose symbol is the characteristic exponent of the process, making it possible to study the properties of Feller processes as space inhomogeneous processes that locally behave like Lévy processes. The presentation is self-contained, and includes dedicated chapters that review Markov processes, operator semigroups, random measures, etc. In turn, Davar Khoshnevisan’s course investigates selected problems in the field of stochastic partial differential equations of parabolic type. More precisely, the main objective is to establish an Invariance Principle for those equations in a rather general setting, and to deduce, as an application, comparison-type results. The framework in which these problems are addressed goes beyond the classical setting, in the sense that the driving noise is assumed to be a multiplicative space-time white noise on a group, and the underlying elliptic operator corresponds to a generator of a Lévy process on that group. This implies that stochastic integration with respect to the above noise, as well as the existence and uniqueness of a solution for the corresponding equation, become relevant in their own right. These aspects are also developed and supplemented by a wealth of illustrative examples.

Probability and Stochastic Processes

Download Probability and Stochastic Processes PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 9819999944
Total Pages : 207 pages
Book Rating : 4.8/5 (199 download)

DOWNLOAD NOW!


Book Synopsis Probability and Stochastic Processes by : Siva Athreya

Download or read book Probability and Stochastic Processes written by Siva Athreya and published by Springer Nature. This book was released on with total page 207 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Analysis of Stochastic Partial Differential Equations

Download Analysis of Stochastic Partial Differential Equations PDF Online Free

Author :
Publisher : American Mathematical Soc.
ISBN 13 : 147041547X
Total Pages : 127 pages
Book Rating : 4.4/5 (74 download)

DOWNLOAD NOW!


Book Synopsis Analysis of Stochastic Partial Differential Equations by : Davar Khoshnevisan

Download or read book Analysis of Stochastic Partial Differential Equations written by Davar Khoshnevisan and published by American Mathematical Soc.. This book was released on 2014-06-11 with total page 127 pages. Available in PDF, EPUB and Kindle. Book excerpt: The general area of stochastic PDEs is interesting to mathematicians because it contains an enormous number of challenging open problems. There is also a great deal of interest in this topic because it has deep applications in disciplines that range from applied mathematics, statistical mechanics, and theoretical physics, to theoretical neuroscience, theory of complex chemical reactions [including polymer science], fluid dynamics, and mathematical finance. The stochastic PDEs that are studied in this book are similar to the familiar PDE for heat in a thin rod, but with the additional restriction that the external forcing density is a two-parameter stochastic process, or what is more commonly the case, the forcing is a "random noise," also known as a "generalized random field." At several points in the lectures, there are examples that highlight the phenomenon that stochastic PDEs are not a subset of PDEs. In fact, the introduction of noise in some partial differential equations can bring about not a small perturbation, but truly fundamental changes to the system that the underlying PDE is attempting to describe. The topics covered include a brief introduction to the stochastic heat equation, structure theory for the linear stochastic heat equation, and an in-depth look at intermittency properties of the solution to semilinear stochastic heat equations. Specific topics include stochastic integrals à la Norbert Wiener, an infinite-dimensional Itô-type stochastic integral, an example of a parabolic Anderson model, and intermittency fronts. There are many possible approaches to stochastic PDEs. The selection of topics and techniques presented here are informed by the guiding example of the stochastic heat equation. A co-publication of the AMS and CBMS.

General Stochastic Measures

Download General Stochastic Measures PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 1786308282
Total Pages : 276 pages
Book Rating : 4.7/5 (863 download)

DOWNLOAD NOW!


Book Synopsis General Stochastic Measures by : Vadym M. Radchenko

Download or read book General Stochastic Measures written by Vadym M. Radchenko and published by John Wiley & Sons. This book was released on 2022-09-21 with total page 276 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is devoted to the study of stochastic measures (SMs). An SM is a sigma-additive in probability random function, defined on a sigma-algebra of sets. SMs can be generated by the increments of random processes from many important classes such as square-integrable martingales and fractional Brownian motion, as well as alpha-stable processes. SMs include many well-known stochastic integrators as partial cases. General Stochastic Measures provides a comprehensive theoretical overview of SMs, including the basic properties of the integrals of real functions with respect to SMs. A number of results concerning the Besov regularity of SMs are presented, along with equations driven by SMs, types of solution approximation and the averaging principle. Integrals in the Hilbert space and symmetric integrals of random functions are also addressed. The results from this book are applicable to a wide range of stochastic processes, making it a useful reference text for researchers and postgraduate or postdoctoral students who specialize in stochastic analysis.

Measure-Valued Branching Markov Processes

Download Measure-Valued Branching Markov Processes PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3662669102
Total Pages : 481 pages
Book Rating : 4.6/5 (626 download)

DOWNLOAD NOW!


Book Synopsis Measure-Valued Branching Markov Processes by : Zenghu Li

Download or read book Measure-Valued Branching Markov Processes written by Zenghu Li and published by Springer Nature. This book was released on 2023-04-14 with total page 481 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a compact introduction to the theory of measure-valued branching processes, immigration processes and Ornstein–Uhlenbeck type processes. Measure-valued branching processes arise as high density limits of branching particle systems. The first part of the book gives an analytic construction of a special class of such processes, the Dawson–Watanabe superprocesses, which includes the finite-dimensional continuous-state branching process as an example. Under natural assumptions, it is shown that the superprocesses have Borel right realizations. Transformations are then used to derive the existence and regularity of several different forms of the superprocesses. This technique simplifies the constructions and gives useful new perspectives. Martingale problems of superprocesses are discussed under Feller type assumptions. The second part investigates immigration structures associated with the measure-valued branching processes. The structures are formulated by skew convolution semigroups, which are characterized in terms of infinitely divisible probability entrance laws. A theory of stochastic equations for one-dimensional continuous-state branching processes with or without immigration is developed, which plays a key role in the construction of measure flows of those processes. The third part of the book studies a class of Ornstein-Uhlenbeck type processes in Hilbert spaces defined by generalized Mehler semigroups, which arise naturally in fluctuation limit theorems of the immigration superprocesses. This volume is aimed at researchers in measure-valued processes, branching processes, stochastic analysis, biological and genetic models, and graduate students in probability theory and stochastic processes.