Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
A Local Relative Trace Formula For The Ginzburg Rallis Model
Download A Local Relative Trace Formula For The Ginzburg Rallis Model full books in PDF, epub, and Kindle. Read online A Local Relative Trace Formula For The Ginzburg Rallis Model ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis A Local Relative Trace Formula for the Ginzburg-Rallis Model: The Geometric Side by : Chen Wan
Download or read book A Local Relative Trace Formula for the Ginzburg-Rallis Model: The Geometric Side written by Chen Wan and published by American Mathematical Soc.. This book was released on 2019-12-02 with total page 102 pages. Available in PDF, EPUB and Kindle. Book excerpt: Following the method developed by Waldspurger and Beuzart-Plessis in their proofs of the local Gan-Gross-Prasad conjecture, the author is able to prove the geometric side of a local relative trace formula for the Ginzburg-Rallis model. Then by applying such formula, the author proves a multiplicity formula of the Ginzburg-Rallis model for the supercuspidal representations. Using that multiplicity formula, the author proves the multiplicity one theorem for the Ginzburg-Rallis model over Vogan packets in the supercuspidal case.
Book Synopsis A Local Relative Trace Formula for the Ginzburg-Rallis Model by : Chen Wan
Download or read book A Local Relative Trace Formula for the Ginzburg-Rallis Model written by Chen Wan and published by . This book was released on 2019 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis The Mother Body Phase Transition in the Normal Matrix Model by : Pavel M. Bleher
Download or read book The Mother Body Phase Transition in the Normal Matrix Model written by Pavel M. Bleher and published by American Mathematical Soc.. This book was released on 2020-09-28 with total page 156 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this present paper, the authors consider the normal matrix model with cubic plus linear potential.
Book Synopsis Global Smooth Solutions for the Inviscid SQG Equation by : Angel Castro
Download or read book Global Smooth Solutions for the Inviscid SQG Equation written by Angel Castro and published by American Mathematical Soc.. This book was released on 2020-09-28 with total page 102 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this paper, the authors show the existence of the first non trivial family of classical global solutions of the inviscid surface quasi-geostrophic equation.
Book Synopsis Nonlinear Diffusion Equations and Curvature Conditions in Metric Measure Spaces by : Luigi Ambrosio
Download or read book Nonlinear Diffusion Equations and Curvature Conditions in Metric Measure Spaces written by Luigi Ambrosio and published by American Mathematical Soc.. This book was released on 2020-02-13 with total page 134 pages. Available in PDF, EPUB and Kindle. Book excerpt: The aim of this paper is to provide new characterizations of the curvature dimension condition in the context of metric measure spaces (X,d,m). On the geometric side, the authors' new approach takes into account suitable weighted action functionals which provide the natural modulus of K-convexity when one investigates the convexity properties of N-dimensional entropies. On the side of diffusion semigroups and evolution variational inequalities, the authors' new approach uses the nonlinear diffusion semigroup induced by the N-dimensional entropy, in place of the heat flow. Under suitable assumptions (most notably the quadraticity of Cheeger's energy relative to the metric measure structure) both approaches are shown to be equivalent to the strong CD∗(K,N) condition of Bacher-Sturm.
Book Synopsis Propagating Terraces and the Dynamics of Front-Like Solutions of Reaction-Diffusion Equations on R by : Peter Poláčik
Download or read book Propagating Terraces and the Dynamics of Front-Like Solutions of Reaction-Diffusion Equations on R written by Peter Poláčik and published by American Mathematical Soc.. This book was released on 2020-05-13 with total page 100 pages. Available in PDF, EPUB and Kindle. Book excerpt: The author considers semilinear parabolic equations of the form ut=uxx+f(u),x∈R,t>0, where f a C1 function. Assuming that 0 and γ>0 are constant steady states, the author investigates the large-time behavior of the front-like solutions, that is, solutions u whose initial values u(x,0) are near γ for x≈−∞ and near 0 for x≈∞. If the steady states 0 and γ are both stable, the main theorem shows that at large times, the graph of u(⋅,t) is arbitrarily close to a propagating terrace (a system of stacked traveling fonts). The author proves this result without requiring monotonicity of u(⋅,0) or the nondegeneracy of zeros of f. The case when one or both of the steady states 0, γ is unstable is considered as well. As a corollary to the author's theorems, he shows that all front-like solutions are quasiconvergent: their ω-limit sets with respect to the locally uniform convergence consist of steady states. In the author's proofs he employs phase plane analysis, intersection comparison (or, zero number) arguments, and a geometric method involving the spatial trajectories {(u(x,t),ux(x,t)):x∈R}, t>0, of the solutions in question.
Book Synopsis Affine Flag Varieties and Quantum Symmetric Pairs by : Zhaobing Fan
Download or read book Affine Flag Varieties and Quantum Symmetric Pairs written by Zhaobing Fan and published by American Mathematical Soc.. This book was released on 2020-09-28 with total page 136 pages. Available in PDF, EPUB and Kindle. Book excerpt: The quantum groups of finite and affine type $A$ admit geometric realizations in terms of partial flag varieties of finite and affine type $A$. Recently, the quantum group associated to partial flag varieties of finite type $B/C$ is shown to be a coideal subalgebra of the quantum group of finite type $A$.
Book Synopsis Degree Theory of Immersed Hypersurfaces by : Harold Rosenberg
Download or read book Degree Theory of Immersed Hypersurfaces written by Harold Rosenberg and published by American Mathematical Soc.. This book was released on 2020-09-28 with total page 74 pages. Available in PDF, EPUB and Kindle. Book excerpt: The authors develop a degree theory for compact immersed hypersurfaces of prescribed $K$-curvature immersed in a compact, orientable Riemannian manifold, where $K$ is any elliptic curvature function.
Book Synopsis Subgroup Decomposition in Out(Fn) by : Michael Handel
Download or read book Subgroup Decomposition in Out(Fn) written by Michael Handel and published by American Mathematical Soc.. This book was released on 2020-05-13 with total page 290 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this work the authors develop a decomposition theory for subgroups of Out(Fn) which generalizes the decomposition theory for individual elements of Out(Fn) found in the work of Bestvina, Feighn, and Handel, and which is analogous to the decomposition theory for subgroups of mapping class groups found in the work of Ivanov.
Book Synopsis Dynamics Near the Subcritical Transition of the 3D Couette Flow I: Below Threshold Case by : Jacob Bedrossian
Download or read book Dynamics Near the Subcritical Transition of the 3D Couette Flow I: Below Threshold Case written by Jacob Bedrossian and published by American Mathematical Soc.. This book was released on 2020-09-28 with total page 170 pages. Available in PDF, EPUB and Kindle. Book excerpt: The authors study small disturbances to the periodic, plane Couette flow in the 3D incompressible Navier-Stokes equations at high Reynolds number Re. They prove that for sufficiently regular initial data of size $epsilon leq c_0mathbf {Re}^-1$ for some universal $c_0 > 0$, the solution is global, remains within $O(c_0)$ of the Couette flow in $L^2$, and returns to the Couette flow as $t rightarrow infty $. For times $t gtrsim mathbf {Re}^1/3$, the streamwise dependence is damped by a mixing-enhanced dissipation effect and the solution is rapidly attracted to the class of ``2.5 dimensional'' streamwise-independent solutions referred to as streaks.
Book Synopsis The Triangle-Free Process and the Ramsey Number R(3,k) by : Gonzalo Fiz Pontiveros
Download or read book The Triangle-Free Process and the Ramsey Number R(3,k) written by Gonzalo Fiz Pontiveros and published by American Mathematical Soc.. This book was released on 2020-04-03 with total page 138 pages. Available in PDF, EPUB and Kindle. Book excerpt: The areas of Ramsey theory and random graphs have been closely linked ever since Erdős's famous proof in 1947 that the “diagonal” Ramsey numbers R(k) grow exponentially in k. In the early 1990s, the triangle-free process was introduced as a model which might potentially provide good lower bounds for the “off-diagonal” Ramsey numbers R(3,k). In this model, edges of Kn are introduced one-by-one at random and added to the graph if they do not create a triangle; the resulting final (random) graph is denoted Gn,△. In 2009, Bohman succeeded in following this process for a positive fraction of its duration, and thus obtained a second proof of Kim's celebrated result that R(3,k)=Θ(k2/logk). In this paper the authors improve the results of both Bohman and Kim and follow the triangle-free process all the way to its asymptotic end.
Book Synopsis Global Well-Posedness of High Dimensional Maxwell–Dirac for Small Critical Data by : Cristian Gavrus
Download or read book Global Well-Posedness of High Dimensional Maxwell–Dirac for Small Critical Data written by Cristian Gavrus and published by American Mathematical Soc.. This book was released on 2020-05-13 with total page 106 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this paper, the authors prove global well-posedness of the massless Maxwell–Dirac equation in the Coulomb gauge on R1+d(d≥4) for data with small scale-critical Sobolev norm, as well as modified scattering of the solutions. Main components of the authors' proof are A) uncovering null structure of Maxwell–Dirac in the Coulomb gauge, and B) proving solvability of the underlying covariant Dirac equation. A key step for achieving both is to exploit (and justify) a deep analogy between Maxwell–Dirac and Maxwell-Klein-Gordon (for which an analogous result was proved earlier by Krieger-Sterbenz-Tataru, which says that the most difficult part of Maxwell–Dirac takes essentially the same form as Maxwell-Klein-Gordon.
Book Synopsis Minimal Weak Truth Table Degrees and Computably Enumerable Turing Degrees by : Rodney G. Downey
Download or read book Minimal Weak Truth Table Degrees and Computably Enumerable Turing Degrees written by Rodney G. Downey and published by American Mathematical Soc.. This book was released on 2020-09-28 with total page 104 pages. Available in PDF, EPUB and Kindle. Book excerpt: First, there are sets with minimal weak truth table degree which bound noncomputable computably enumerable sets under Turing reducibility. Second, no set with computable enumerable Turing degree can have minimal weak truth table degree. Third, no $Delta^0_2$ set which Turing bounds a promptly simple set can have minimal weak truth table degree.
Book Synopsis A Unified Approach to Structural Limits and Limits of Graphs with Bounded Tree-Depth by : Jaroslav Nešetřil
Download or read book A Unified Approach to Structural Limits and Limits of Graphs with Bounded Tree-Depth written by Jaroslav Nešetřil and published by American Mathematical Soc.. This book was released on 2020-04-03 with total page 120 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this paper the authors introduce a general framework for the study of limits of relational structures and graphs in particular, which is based on a combination of model theory and (functional) analysis. The authors show how the various approaches to graph limits fit to this framework and that the authors naturally appear as “tractable cases” of a general theory. As an outcome of this, the authors provide extensions of known results. The authors believe that this puts these into a broader context. The second part of the paper is devoted to the study of sparse structures. First, the authors consider limits of structures with bounded diameter connected components and prove that in this case the convergence can be “almost” studied component-wise. They also propose the structure of limit objects for convergent sequences of sparse structures. Eventually, they consider the specific case of limits of colored rooted trees with bounded height and of graphs with bounded tree-depth, motivated by their role as “elementary bricks” these graphs play in decompositions of sparse graphs, and give an explicit construction of a limit object in this case. This limit object is a graph built on a standard probability space with the property that every first-order definable set of tuples is measurable. This is an example of the general concept of modeling the authors introduce here. Their example is also the first “intermediate class” with explicitly defined limit structures where the inverse problem has been solved.
Book Synopsis Quasi-periodic Standing Wave Solutions of Gravity-Capillary Water Waves by : Massimiliano Berti
Download or read book Quasi-periodic Standing Wave Solutions of Gravity-Capillary Water Waves written by Massimiliano Berti and published by American Mathematical Soc.. This book was released on 2020-04-03 with total page 184 pages. Available in PDF, EPUB and Kindle. Book excerpt: The authors prove the existence and the linear stability of small amplitude time quasi-periodic standing wave solutions (i.e. periodic and even in the space variable x) of a 2-dimensional ocean with infinite depth under the action of gravity and surface tension. Such an existence result is obtained for all the values of the surface tension belonging to a Borel set of asymptotically full Lebesgue measure.
Book Synopsis Automorphisms of Fusion Systems of Finite Simple Groups of Lie Type by : Carles Broto
Download or read book Automorphisms of Fusion Systems of Finite Simple Groups of Lie Type written by Carles Broto and published by American Mathematical Soc.. This book was released on 2020-02-13 with total page 176 pages. Available in PDF, EPUB and Kindle. Book excerpt: For a finite group G of Lie type and a prime p, the authors compare the automorphism groups of the fusion and linking systems of G at p with the automorphism group of G itself. When p is the defining characteristic of G, they are all isomorphic, with a very short list of exceptions. When p is different from the defining characteristic, the situation is much more complex but can always be reduced to a case where the natural map from Out(G) to outer automorphisms of the fusion or linking system is split surjective. This work is motivated in part by questions involving extending the local structure of a group by a group of automorphisms, and in part by wanting to describe self homotopy equivalences of BG∧p in terms of Out(G).
Book Synopsis The Bounded and Precise Word Problems for Presentations of Groups by : S. V. Ivanov
Download or read book The Bounded and Precise Word Problems for Presentations of Groups written by S. V. Ivanov and published by American Mathematical Soc.. This book was released on 2020-05-13 with total page 118 pages. Available in PDF, EPUB and Kindle. Book excerpt: The author introduces and studies the bounded word problem and the precise word problem for groups given by means of generators and defining relations. For example, for every finitely presented group, the bounded word problem is in NP, i.e., it can be solved in nondeterministic polynomial time, and the precise word problem is in PSPACE, i.e., it can be solved in polynomial space. The main technical result of the paper states that, for certain finite presentations of groups, which include the Baumslag-Solitar one-relator groups and free products of cyclic groups, the bounded word problem and the precise word problem can be solved in polylogarithmic space. As consequences of developed techniques that can be described as calculus of brackets, the author obtains polylogarithmic space bounds for the computational complexity of the diagram problem for free groups, for the width problem for elements of free groups, and for computation of the area defined by polygonal singular closed curves in the plane. The author also obtains polynomial time bounds for these problems.