Bayesian Methods in Health Economics

Download Bayesian Methods in Health Economics PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1439895554
Total Pages : 246 pages
Book Rating : 4.4/5 (398 download)

DOWNLOAD NOW!


Book Synopsis Bayesian Methods in Health Economics by : Gianluca Baio

Download or read book Bayesian Methods in Health Economics written by Gianluca Baio and published by CRC Press. This book was released on 2012-11-12 with total page 246 pages. Available in PDF, EPUB and Kindle. Book excerpt: Health economics is concerned with the study of the cost-effectiveness of health care interventions. This book provides an overview of Bayesian methods for the analysis of health economic data. After an introduction to the basic economic concepts and methods of evaluation, it presents Bayesian statistics using accessible mathematics. The next chapters describe the theory and practice of cost-effectiveness analysis from a statistical viewpoint, and Bayesian computation, notably MCMC. The final chapter presents three detailed case studies covering cost-effectiveness analyses using individual data from clinical trials, evidence synthesis and hierarchical models and Markov models. The text uses WinBUGS and JAGS with datasets and code available online.

Bayesian Approaches to Clinical Trials and Health-Care Evaluation

Download Bayesian Approaches to Clinical Trials and Health-Care Evaluation PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 9780471499756
Total Pages : 416 pages
Book Rating : 4.4/5 (997 download)

DOWNLOAD NOW!


Book Synopsis Bayesian Approaches to Clinical Trials and Health-Care Evaluation by : David J. Spiegelhalter

Download or read book Bayesian Approaches to Clinical Trials and Health-Care Evaluation written by David J. Spiegelhalter and published by John Wiley & Sons. This book was released on 2004-01-16 with total page 416 pages. Available in PDF, EPUB and Kindle. Book excerpt: READ ALL ABOUT IT! David Spiegelhalter has recently joined the ranks of Isaac Newton, Charles Darwin and Stephen Hawking by becoming a fellow of the Royal Society. Originating from the Medical Research Council’s biostatistics unit, David has played a leading role in the Bristol heart surgery and Harold Shipman inquiries. Order a copy of this author’s comprehensive text TODAY! The Bayesian approach involves synthesising data and judgement in order to reach conclusions about unknown quantities and make predictions. Bayesian methods have become increasingly popular in recent years, notably in medical research, and although there are a number of books on Bayesian analysis, few cover clinical trials and biostatistical applications in any detail. Bayesian Approaches to Clinical Trials and Health-Care Evaluation provides a valuable overview of this rapidly evolving field, including basic Bayesian ideas, prior distributions, clinical trials, observational studies, evidence synthesis and cost-effectiveness analysis. Covers a broad array of essential topics, building from the basics to more advanced techniques. Illustrated throughout by detailed case studies and worked examples Includes exercises in all chapters Accessible to anyone with a basic knowledge of statistics Authors are at the forefront of research into Bayesian methods in medical research Accompanied by a Web site featuring data sets and worked examples using Excel and WinBUGS - the most widely used Bayesian modelling package Bayesian Approaches to Clinical Trials and Health-Care Evaluation is suitable for students and researchers in medical statistics, statisticians in the pharmaceutical industry, and anyone involved in conducting clinical trials and assessment of health-care technology.

Bayesian Data Analysis, Third Edition

Download Bayesian Data Analysis, Third Edition PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1439840954
Total Pages : 677 pages
Book Rating : 4.4/5 (398 download)

DOWNLOAD NOW!


Book Synopsis Bayesian Data Analysis, Third Edition by : Andrew Gelman

Download or read book Bayesian Data Analysis, Third Edition written by Andrew Gelman and published by CRC Press. This book was released on 2013-11-01 with total page 677 pages. Available in PDF, EPUB and Kindle. Book excerpt: Now in its third edition, this classic book is widely considered the leading text on Bayesian methods, lauded for its accessible, practical approach to analyzing data and solving research problems. Bayesian Data Analysis, Third Edition continues to take an applied approach to analysis using up-to-date Bayesian methods. The authors—all leaders in the statistics community—introduce basic concepts from a data-analytic perspective before presenting advanced methods. Throughout the text, numerous worked examples drawn from real applications and research emphasize the use of Bayesian inference in practice. New to the Third Edition Four new chapters on nonparametric modeling Coverage of weakly informative priors and boundary-avoiding priors Updated discussion of cross-validation and predictive information criteria Improved convergence monitoring and effective sample size calculations for iterative simulation Presentations of Hamiltonian Monte Carlo, variational Bayes, and expectation propagation New and revised software code The book can be used in three different ways. For undergraduate students, it introduces Bayesian inference starting from first principles. For graduate students, the text presents effective current approaches to Bayesian modeling and computation in statistics and related fields. For researchers, it provides an assortment of Bayesian methods in applied statistics. Additional materials, including data sets used in the examples, solutions to selected exercises, and software instructions, are available on the book’s web page.

Bayesian Analysis for the Social Sciences

Download Bayesian Analysis for the Social Sciences PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 9780470686638
Total Pages : 598 pages
Book Rating : 4.6/5 (866 download)

DOWNLOAD NOW!


Book Synopsis Bayesian Analysis for the Social Sciences by : Simon Jackman

Download or read book Bayesian Analysis for the Social Sciences written by Simon Jackman and published by John Wiley & Sons. This book was released on 2009-10-27 with total page 598 pages. Available in PDF, EPUB and Kindle. Book excerpt: Bayesian methods are increasingly being used in the social sciences, as the problems encountered lend themselves so naturally to the subjective qualities of Bayesian methodology. This book provides an accessible introduction to Bayesian methods, tailored specifically for social science students. It contains lots of real examples from political science, psychology, sociology, and economics, exercises in all chapters, and detailed descriptions of all the key concepts, without assuming any background in statistics beyond a first course. It features examples of how to implement the methods using WinBUGS – the most-widely used Bayesian analysis software in the world – and R – an open-source statistical software. The book is supported by a Website featuring WinBUGS and R code, and data sets.

Data Analysis Using Regression and Multilevel/Hierarchical Models

Download Data Analysis Using Regression and Multilevel/Hierarchical Models PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 9780521686891
Total Pages : 654 pages
Book Rating : 4.6/5 (868 download)

DOWNLOAD NOW!


Book Synopsis Data Analysis Using Regression and Multilevel/Hierarchical Models by : Andrew Gelman

Download or read book Data Analysis Using Regression and Multilevel/Hierarchical Models written by Andrew Gelman and published by Cambridge University Press. This book was released on 2007 with total page 654 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book, first published in 2007, is for the applied researcher performing data analysis using linear and nonlinear regression and multilevel models.

Bayesian Population Analysis Using WinBUGS

Download Bayesian Population Analysis Using WinBUGS PDF Online Free

Author :
Publisher : Academic Press
ISBN 13 : 0123870208
Total Pages : 556 pages
Book Rating : 4.1/5 (238 download)

DOWNLOAD NOW!


Book Synopsis Bayesian Population Analysis Using WinBUGS by : Marc Kéry

Download or read book Bayesian Population Analysis Using WinBUGS written by Marc Kéry and published by Academic Press. This book was released on 2012 with total page 556 pages. Available in PDF, EPUB and Kindle. Book excerpt: Bayesian statistics has exploded into biology and its sub-disciplines, such as ecology, over the past decade. The free software program WinBUGS, and its open-source sister OpenBugs, is currently the only flexible and general-purpose program available with which the average ecologist can conduct standard and non-standard Bayesian statistics. Comprehensive and richly commented examples illustrate a wide range of models that are most relevant to the research of a modern population ecologist All WinBUGS/OpenBUGS analyses are completely integrated in software R Includes complete documentation of all R and WinBUGS code required to conduct analyses and shows all the necessary steps from having the data in a text file out of Excel to interpreting and processing the output from WinBUGS in R

Hierarchical Modeling and Analysis for Spatial Data

Download Hierarchical Modeling and Analysis for Spatial Data PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 020348780X
Total Pages : 470 pages
Book Rating : 4.2/5 (34 download)

DOWNLOAD NOW!


Book Synopsis Hierarchical Modeling and Analysis for Spatial Data by : Sudipto Banerjee

Download or read book Hierarchical Modeling and Analysis for Spatial Data written by Sudipto Banerjee and published by CRC Press. This book was released on 2003-12-17 with total page 470 pages. Available in PDF, EPUB and Kindle. Book excerpt: Among the many uses of hierarchical modeling, their application to the statistical analysis of spatial and spatio-temporal data from areas such as epidemiology And environmental science has proven particularly fruitful. Yet to date, the few books that address the subject have been either too narrowly focused on specific aspects of spatial analysis,

A Primer on Bayesian Statistics in Health Economics and Outcomes Research

Download A Primer on Bayesian Statistics in Health Economics and Outcomes Research PDF Online Free

Author :
Publisher :
ISBN 13 : 9780974364100
Total Pages : pages
Book Rating : 4.3/5 (641 download)

DOWNLOAD NOW!


Book Synopsis A Primer on Bayesian Statistics in Health Economics and Outcomes Research by : Bryan Luce

Download or read book A Primer on Bayesian Statistics in Health Economics and Outcomes Research written by Bryan Luce and published by . This book was released on 2003 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Network Meta-Analysis for Decision-Making

Download Network Meta-Analysis for Decision-Making PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 1118647505
Total Pages : 484 pages
Book Rating : 4.1/5 (186 download)

DOWNLOAD NOW!


Book Synopsis Network Meta-Analysis for Decision-Making by : Sofia Dias

Download or read book Network Meta-Analysis for Decision-Making written by Sofia Dias and published by John Wiley & Sons. This book was released on 2018-03-19 with total page 484 pages. Available in PDF, EPUB and Kindle. Book excerpt: A practical guide to network meta-analysis with examples and code In the evaluation of healthcare, rigorous methods of quantitative assessment are necessary to establish which interventions are effective and cost-effective. Often a single study will not provide the answers and it is desirable to synthesise evidence from multiple sources, usually randomised controlled trials. This book takes an approach to evidence synthesis that is specifically intended for decision making when there are two or more treatment alternatives being evaluated, and assumes that the purpose of every synthesis is to answer the question "for this pre-identified population of patients, which treatment is 'best'?" A comprehensive, coherent framework for network meta-analysis (mixed treatment comparisons) is adopted and estimated using Bayesian Markov Chain Monte Carlo methods implemented in the freely available software WinBUGS. Each chapter contains worked examples, exercises, solutions and code that may be adapted by readers to apply to their own analyses. This book can be used as an introduction to evidence synthesis and network meta-analysis, its key properties and policy implications. Examples and advanced methods are also presented for the more experienced reader. Methods used throughout this book can be applied consistently: model critique and checking for evidence consistency are emphasised. Methods are based on technical support documents produced for NICE Decision Support Unit, which support the NICE Methods of Technology Appraisal. Code presented is also the basis for the code used by the ISPOR Task Force on Indirect Comparisons. Includes extensive carefully worked examples, with thorough explanations of how to set out data for use in WinBUGS and how to interpret the output. Network Meta-Analysis for Decision Making will be of interest to decision makers, medical statisticians, health economists, and anyone involved in Health Technology Assessment including the pharmaceutical industry.

Bayesian Modeling Using WinBUGS

Download Bayesian Modeling Using WinBUGS PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 1118210352
Total Pages : 477 pages
Book Rating : 4.1/5 (182 download)

DOWNLOAD NOW!


Book Synopsis Bayesian Modeling Using WinBUGS by : Ioannis Ntzoufras

Download or read book Bayesian Modeling Using WinBUGS written by Ioannis Ntzoufras and published by John Wiley & Sons. This book was released on 2011-09-20 with total page 477 pages. Available in PDF, EPUB and Kindle. Book excerpt: A hands-on introduction to the principles of Bayesian modeling using WinBUGS Bayesian Modeling Using WinBUGS provides an easily accessible introduction to the use of WinBUGS programming techniques in a variety of Bayesian modeling settings. The author provides an accessible treatment of the topic, offering readers a smooth introduction to the principles of Bayesian modeling with detailed guidance on the practical implementation of key principles. The book begins with a basic introduction to Bayesian inference and the WinBUGS software and goes on to cover key topics, including: Markov Chain Monte Carlo algorithms in Bayesian inference Generalized linear models Bayesian hierarchical models Predictive distribution and model checking Bayesian model and variable evaluation Computational notes and screen captures illustrate the use of both WinBUGS as well as R software to apply the discussed techniques. Exercises at the end of each chapter allow readers to test their understanding of the presented concepts and all data sets and code are available on the book's related Web site. Requiring only a working knowledge of probability theory and statistics, Bayesian Modeling Using WinBUGS serves as an excellent book for courses on Bayesian statistics at the upper-undergraduate and graduate levels. It is also a valuable reference for researchers and practitioners in the fields of statistics, actuarial science, medicine, and the social sciences who use WinBUGS in their everyday work.

Bayesian Methods in Pharmaceutical Research

Download Bayesian Methods in Pharmaceutical Research PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1351718673
Total Pages : 547 pages
Book Rating : 4.3/5 (517 download)

DOWNLOAD NOW!


Book Synopsis Bayesian Methods in Pharmaceutical Research by : Emmanuel Lesaffre

Download or read book Bayesian Methods in Pharmaceutical Research written by Emmanuel Lesaffre and published by CRC Press. This book was released on 2020-04-15 with total page 547 pages. Available in PDF, EPUB and Kindle. Book excerpt: Since the early 2000s, there has been increasing interest within the pharmaceutical industry in the application of Bayesian methods at various stages of the research, development, manufacturing, and health economic evaluation of new health care interventions. In 2010, the first Applied Bayesian Biostatistics conference was held, with the primary objective to stimulate the practical implementation of Bayesian statistics, and to promote the added-value for accelerating the discovery and the delivery of new cures to patients. This book is a synthesis of the conferences and debates, providing an overview of Bayesian methods applied to nearly all stages of research and development, from early discovery to portfolio management. It highlights the value associated with sharing a vision with the regulatory authorities, academia, and pharmaceutical industry, with a view to setting up a common strategy for the appropriate use of Bayesian statistics for the benefit of patients. The book covers: Theory, methods, applications, and computing Bayesian biostatistics for clinical innovative designs Adding value with Real World Evidence Opportunities for rare, orphan diseases, and pediatric development Applied Bayesian biostatistics in manufacturing Decision making and Portfolio management Regulatory perspective and public health policies Statisticians and data scientists involved in the research, development, and approval of new cures will be inspired by the possible applications of Bayesian methods covered in the book. The methods, applications, and computational guidance will enable the reader to apply Bayesian methods in their own pharmaceutical research.

The BUGS Book

Download The BUGS Book PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1466586664
Total Pages : 393 pages
Book Rating : 4.4/5 (665 download)

DOWNLOAD NOW!


Book Synopsis The BUGS Book by : David Lunn

Download or read book The BUGS Book written by David Lunn and published by CRC Press. This book was released on 2012-10-02 with total page 393 pages. Available in PDF, EPUB and Kindle. Book excerpt: Bayesian statistical methods have become widely used for data analysis and modelling in recent years, and the BUGS software has become the most popular software for Bayesian analysis worldwide. Authored by the team that originally developed this software, The BUGS Book provides a practical introduction to this program and its use. The text presents

Spatial and Spatio-temporal Bayesian Models with R - INLA

Download Spatial and Spatio-temporal Bayesian Models with R - INLA PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 1118326555
Total Pages : 322 pages
Book Rating : 4.1/5 (183 download)

DOWNLOAD NOW!


Book Synopsis Spatial and Spatio-temporal Bayesian Models with R - INLA by : Marta Blangiardo

Download or read book Spatial and Spatio-temporal Bayesian Models with R - INLA written by Marta Blangiardo and published by John Wiley & Sons. This book was released on 2015-06-02 with total page 322 pages. Available in PDF, EPUB and Kindle. Book excerpt: Spatial and Spatio-Temporal Bayesian Models with R-INLA provides a much needed, practically oriented & innovative presentation of the combination of Bayesian methodology and spatial statistics. The authors combine an introduction to Bayesian theory and methodology with a focus on the spatial and spatio-temporal models used within the Bayesian framework and a series of practical examples which allow the reader to link the statistical theory presented to real data problems. The numerous examples from the fields of epidemiology, biostatistics and social science all are coded in the R package R-INLA, which has proven to be a valid alternative to the commonly used Markov Chain Monte Carlo simulations

Bayesian Models for Categorical Data

Download Bayesian Models for Categorical Data PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 0470092386
Total Pages : 446 pages
Book Rating : 4.4/5 (7 download)

DOWNLOAD NOW!


Book Synopsis Bayesian Models for Categorical Data by : Peter Congdon

Download or read book Bayesian Models for Categorical Data written by Peter Congdon and published by John Wiley & Sons. This book was released on 2005-12-13 with total page 446 pages. Available in PDF, EPUB and Kindle. Book excerpt: The use of Bayesian methods for the analysis of data has grown substantially in areas as diverse as applied statistics, psychology, economics and medical science. Bayesian Methods for Categorical Data sets out to demystify modern Bayesian methods, making them accessible to students and researchers alike. Emphasizing the use of statistical computing and applied data analysis, this book provides a comprehensive introduction to Bayesian methods of categorical outcomes. * Reviews recent Bayesian methodology for categorical outcomes (binary, count and multinomial data). * Considers missing data models techniques and non-standard models (ZIP and negative binomial). * Evaluates time series and spatio-temporal models for discrete data. * Features discussion of univariate and multivariate techniques. * Provides a set of downloadable worked examples with documented WinBUGS code, available from an ftp site. The author's previous 2 bestselling titles provided a comprehensive introduction to the theory and application of Bayesian models. Bayesian Models for Categorical Data continues to build upon this foundation by developing their application to categorical, or discrete data - one of the most common types of data available. The author's clear and logical approach makes the book accessible to a wide range of students and practitioners, including those dealing with categorical data in medicine, sociology, psychology and epidemiology.

Bayesian Data Analysis in Ecology Using Linear Models with R, BUGS, and Stan

Download Bayesian Data Analysis in Ecology Using Linear Models with R, BUGS, and Stan PDF Online Free

Author :
Publisher : Academic Press
ISBN 13 : 0128016787
Total Pages : 329 pages
Book Rating : 4.1/5 (28 download)

DOWNLOAD NOW!


Book Synopsis Bayesian Data Analysis in Ecology Using Linear Models with R, BUGS, and Stan by : Franzi Korner-Nievergelt

Download or read book Bayesian Data Analysis in Ecology Using Linear Models with R, BUGS, and Stan written by Franzi Korner-Nievergelt and published by Academic Press. This book was released on 2015-04-04 with total page 329 pages. Available in PDF, EPUB and Kindle. Book excerpt: Bayesian Data Analysis in Ecology Using Linear Models with R, BUGS, and STAN examines the Bayesian and frequentist methods of conducting data analyses. The book provides the theoretical background in an easy-to-understand approach, encouraging readers to examine the processes that generated their data. Including discussions of model selection, model checking, and multi-model inference, the book also uses effect plots that allow a natural interpretation of data. Bayesian Data Analysis in Ecology Using Linear Models with R, BUGS, and STAN introduces Bayesian software, using R for the simple modes, and flexible Bayesian software (BUGS and Stan) for the more complicated ones. Guiding the ready from easy toward more complex (real) data analyses ina step-by-step manner, the book presents problems and solutions—including all R codes—that are most often applicable to other data and questions, making it an invaluable resource for analyzing a variety of data types. - Introduces Bayesian data analysis, allowing users to obtain uncertainty measurements easily for any derived parameter of interest - Written in a step-by-step approach that allows for eased understanding by non-statisticians - Includes a companion website containing R-code to help users conduct Bayesian data analyses on their own data - All example data as well as additional functions are provided in the R-package blmeco

Doing Bayesian Data Analysis

Download Doing Bayesian Data Analysis PDF Online Free

Author :
Publisher : Academic Press
ISBN 13 : 0124059163
Total Pages : 772 pages
Book Rating : 4.1/5 (24 download)

DOWNLOAD NOW!


Book Synopsis Doing Bayesian Data Analysis by : John Kruschke

Download or read book Doing Bayesian Data Analysis written by John Kruschke and published by Academic Press. This book was released on 2014-11-11 with total page 772 pages. Available in PDF, EPUB and Kindle. Book excerpt: Doing Bayesian Data Analysis: A Tutorial with R, JAGS, and Stan, Second Edition provides an accessible approach for conducting Bayesian data analysis, as material is explained clearly with concrete examples. Included are step-by-step instructions on how to carry out Bayesian data analyses in the popular and free software R and WinBugs, as well as new programs in JAGS and Stan. The new programs are designed to be much easier to use than the scripts in the first edition. In particular, there are now compact high-level scripts that make it easy to run the programs on your own data sets. The book is divided into three parts and begins with the basics: models, probability, Bayes' rule, and the R programming language. The discussion then moves to the fundamentals applied to inferring a binomial probability, before concluding with chapters on the generalized linear model. Topics include metric-predicted variable on one or two groups; metric-predicted variable with one metric predictor; metric-predicted variable with multiple metric predictors; metric-predicted variable with one nominal predictor; and metric-predicted variable with multiple nominal predictors. The exercises found in the text have explicit purposes and guidelines for accomplishment. This book is intended for first-year graduate students or advanced undergraduates in statistics, data analysis, psychology, cognitive science, social sciences, clinical sciences, and consumer sciences in business. - Accessible, including the basics of essential concepts of probability and random sampling - Examples with R programming language and JAGS software - Comprehensive coverage of all scenarios addressed by non-Bayesian textbooks: t-tests, analysis of variance (ANOVA) and comparisons in ANOVA, multiple regression, and chi-square (contingency table analysis) - Coverage of experiment planning - R and JAGS computer programming code on website - Exercises have explicit purposes and guidelines for accomplishment - Provides step-by-step instructions on how to conduct Bayesian data analyses in the popular and free software R and WinBugs

Regression Modelling wih Spatial and Spatial-Temporal Data

Download Regression Modelling wih Spatial and Spatial-Temporal Data PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 0429529104
Total Pages : 556 pages
Book Rating : 4.4/5 (295 download)

DOWNLOAD NOW!


Book Synopsis Regression Modelling wih Spatial and Spatial-Temporal Data by : Robert P. Haining

Download or read book Regression Modelling wih Spatial and Spatial-Temporal Data written by Robert P. Haining and published by CRC Press. This book was released on 2020-01-27 with total page 556 pages. Available in PDF, EPUB and Kindle. Book excerpt: Modelling Spatial and Spatial-Temporal Data: A Bayesian Approach is aimed at statisticians and quantitative social, economic and public health students and researchers who work with spatial and spatial-temporal data. It assumes a grounding in statistical theory up to the standard linear regression model. The book compares both hierarchical and spatial econometric modelling, providing both a reference and a teaching text with exercises in each chapter. The book provides a fully Bayesian, self-contained, treatment of the underlying statistical theory, with chapters dedicated to substantive applications. The book includes WinBUGS code and R code and all datasets are available online. Part I covers fundamental issues arising when modelling spatial and spatial-temporal data. Part II focuses on modelling cross-sectional spatial data and begins by describing exploratory methods that help guide the modelling process. There are then two theoretical chapters on Bayesian models and a chapter of applications. Two chapters follow on spatial econometric modelling, one describing different models, the other substantive applications. Part III discusses modelling spatial-temporal data, first introducing models for time series data. Exploratory methods for detecting different types of space-time interaction are presented followed by two chapters on the theory of space-time separable (without space-time interaction) and inseparable (with space-time interaction) models. An applications chapter includes: the evaluation of a policy intervention; analysing the temporal dynamics of crime hotspots; chronic disease surveillance; and testing for evidence of spatial spillovers in the spread of an infectious disease. A final chapter suggests some future directions and challenges.