Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Zp Extensions Of Complex Multiplication Fields
Download Zp Extensions Of Complex Multiplication Fields full books in PDF, epub, and Kindle. Read online Zp Extensions Of Complex Multiplication Fields ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis Cyclotomic Fields and Zeta Values by : John Coates
Download or read book Cyclotomic Fields and Zeta Values written by John Coates and published by Springer Science & Business Media. This book was released on 2006-10-03 with total page 120 pages. Available in PDF, EPUB and Kindle. Book excerpt: Written by two leading workers in the field, this brief but elegant book presents in full detail the simplest proof of the "main conjecture" for cyclotomic fields. Its motivation stems not only from the inherent beauty of the subject, but also from the wider arithmetic interest of these questions. From the reviews: "The text is written in a clear and attractive style, with enough explanation helping the reader orientate in the midst of technical details." --ZENTRALBLATT MATH
Book Synopsis Arithmetic and Geometry by : Michael Artin
Download or read book Arithmetic and Geometry written by Michael Artin and published by Springer Science & Business Media. This book was released on 2013-11-11 with total page 366 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis Number Theory by : Jean-Marie De Koninck
Download or read book Number Theory written by Jean-Marie De Koninck and published by Walter de Gruyter. This book was released on 1989 with total page 1038 pages. Available in PDF, EPUB and Kindle. Book excerpt: Monumental proceedings (very handsomely produced) of a major international conference. The book contains 74 refereed articles which, apart from a few survey papers of peculiar interest, are mostly research papers (63 in English, 11 in French). The topics covered reflect the full diversity of the current trends and activities in modern number theory: elementary, algebraic and analytic number theory; constructive (computational) number theory; elliptic curves and modular forms; arithmetical geometry; transcendence; quadratic forms; coding theory. (NW) Annotation copyrighted by Book News, Inc., Portland, OR
Book Synopsis Local Fields and Their Extensions: Second Edition by : Ivan B. Fesenko
Download or read book Local Fields and Their Extensions: Second Edition written by Ivan B. Fesenko and published by American Mathematical Soc.. This book was released on 2002-07-17 with total page 362 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book offers a modern exposition of the arithmetical properties of local fields using explicit and constructive tools and methods. It has been ten years since the publication of the first edition, and, according to Mathematical Reviews, 1,000 papers on local fields have been published during that period. This edition incorporates improvements to the first edition, with 60 additional pages reflecting several aspects of the developments in local number theory. The volume consists of four parts: elementary properties of local fields, class field theory for various types of local fields and generalizations, explicit formulas for the Hilbert pairing, and Milnor -groups of fields and of local fields. The first three parts essentially simplify, revise, and update the first edition. The book includes the following recent topics: Fontaine-Wintenberger theory of arithmetically profinite extensions and fields of norms, explicit noncohomological approach to the reciprocity map with a review of all other approaches to local class field theory, Fesenko's -class field theory for local fields with perfect residue field, simplified updated presentation of Vostokov's explicit formulas for the Hilbert norm residue symbol, and Milnor -groups of local fields. Numerous exercises introduce the reader to other important recent results in local number theory, and an extensive bibliography provides a guide to related areas.
Book Synopsis Iwasawa Theory 2012 by : Thanasis Bouganis
Download or read book Iwasawa Theory 2012 written by Thanasis Bouganis and published by Springer. This book was released on 2014-12-08 with total page 487 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is the fifth conference in a bi-annual series, following conferences in Besancon, Limoges, Irsee and Toronto. The meeting aims to bring together different strands of research in and closely related to the area of Iwasawa theory. During the week before the conference in a kind of summer school a series of preparatory lectures for young mathematicians was provided as an introduction to Iwasawa theory. Iwasawa theory is a modern and powerful branch of number theory and can be traced back to the Japanese mathematician Kenkichi Iwasawa, who introduced the systematic study of Z_p-extensions and p-adic L-functions, concentrating on the case of ideal class groups. Later this would be generalized to elliptic curves. Over the last few decades considerable progress has been made in automorphic Iwasawa theory, e.g. the proof of the Main Conjecture for GL(2) by Kato and Skinner & Urban. Techniques such as Hida’s theory of p-adic modular forms and big Galois representations play a crucial part. Also a noncommutative Iwasawa theory of arbitrary p-adic Lie extensions has been developed. This volume aims to present a snapshot of the state of art of Iwasawa theory as of 2012. In particular it offers an introduction to Iwasawa theory (based on a preparatory course by Chris Wuthrich) and a survey of the proof of Skinner & Urban (based on a lecture course by Xin Wan).
Book Synopsis Cyclotomic Fields I and II by : Serge Lang
Download or read book Cyclotomic Fields I and II written by Serge Lang and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 449 pages. Available in PDF, EPUB and Kindle. Book excerpt: Kummer's work on cyclotomic fields paved the way for the development of algebraic number theory in general by Dedekind, Weber, Hensel, Hilbert, Takagi, Artin and others. However, the success of this general theory has tended to obscure special facts proved by Kummer about cyclotomic fields which lie deeper than the general theory. For a long period in the 20th century this aspect of Kummer's work seems to have been largely forgotten, except for a few papers, among which are those by Pollaczek [Po], Artin-Hasse [A-H] and Vandiver [Va]. In the mid 1950's, the theory of cyclotomic fields was taken up again by Iwasawa and Leopoldt. Iwasawa viewed cyclotomic fields as being analogues for number fields of the constant field extensions of algebraic geometry, and wrote a great sequence of papers investigating towers of cyclotomic fields, and more generally, Galois extensions of number fields whose Galois group is isomorphic to the additive group of p-adic integers. Leopoldt concentrated on a fixed cyclotomic field, and established various p-adic analogues of the classical complex analytic class number formulas. In particular, this led him to introduce, with Kubota, p-adic analogues of the complex L-functions attached to cyclotomic extensions of the rationals. Finally, in the late 1960's, Iwasawa [Iw 11] made the fundamental discovery that there was a close connection between his work on towers of cyclotomic fields and these p-adic L-functions of Leopoldt - Kubota.
Book Synopsis Proceedings of the St. Petersburg Mathematical Society Volume III by : Ol_ga Aleksandrovna Ladyzhenskai_a
Download or read book Proceedings of the St. Petersburg Mathematical Society Volume III written by Ol_ga Aleksandrovna Ladyzhenskai_a and published by American Mathematical Soc.. This book was released on 1995-06-20 with total page 284 pages. Available in PDF, EPUB and Kindle. Book excerpt: Books in this series highlight some of the most interesting works presented at symposia sponsored by the St. Petersburg Mathematical Society. Aimed at researchers in number theory, field theory, and algebraic geometry, the present volume deals primarily with aspects of the theory of higher local fields and other types of complete discretely valuated fields. Most of the papers require background in local class field theory and algebraic $K$-theory; however, two of them, ``Unit Fractions'' and ``Collections of Multiple Sums'', would be accessible to undergraduates.
Book Synopsis Complex Multiplication and Lifting Problems by : Ching-Li Chai
Download or read book Complex Multiplication and Lifting Problems written by Ching-Li Chai and published by American Mathematical Soc.. This book was released on 2013-12-19 with total page 402 pages. Available in PDF, EPUB and Kindle. Book excerpt: Abelian varieties with complex multiplication lie at the origins of class field theory, and they play a central role in the contemporary theory of Shimura varieties. They are special in characteristic 0 and ubiquitous over finite fields. This book explores the relationship between such abelian varieties over finite fields and over arithmetically interesting fields of characteristic 0 via the study of several natural CM lifting problems which had previously been solved only in special cases. In addition to giving complete solutions to such questions, the authors provide numerous examples to illustrate the general theory and present a detailed treatment of many fundamental results and concepts in the arithmetic of abelian varieties, such as the Main Theorem of Complex Multiplication and its generalizations, the finer aspects of Tate's work on abelian varieties over finite fields, and deformation theory. This book provides an ideal illustration of how modern techniques in arithmetic geometry (such as descent theory, crystalline methods, and group schemes) can be fruitfully combined with class field theory to answer concrete questions about abelian varieties. It will be a useful reference for researchers and advanced graduate students at the interface of number theory and algebraic geometry.
Book Synopsis Proceedings of the St. Petersburg Mathematical Society Volume III by : Olʹga Aleksandrovna Ladyzhenskai︠a︡
Download or read book Proceedings of the St. Petersburg Mathematical Society Volume III written by Olʹga Aleksandrovna Ladyzhenskai︠a︡ and published by American Mathematical Soc.. This book was released on 1995 with total page 281 pages. Available in PDF, EPUB and Kindle. Book excerpt: Books in this series highlight some of the most interesting works presented at symposia sponsored by the St. Petersburg Mathematical Society. Aimed at researchers in number theory, field theory, and algebraic geometry, the present volume deals primarily with aspects of the theory of higher local fields and other types of complete discretely valuated fields. Most of the papers require background in local class field theory and algebraic K-theory; however, two of them, "Unit Fractions" and "Collections of Multiple Sums", would be accessible to undergraduates.
Book Synopsis Quadratic Forms, Linear Algebraic Groups, and Cohomology by : Skip Garibaldi
Download or read book Quadratic Forms, Linear Algebraic Groups, and Cohomology written by Skip Garibaldi and published by Springer Science & Business Media. This book was released on 2010-07-16 with total page 344 pages. Available in PDF, EPUB and Kindle. Book excerpt: Developments in Mathematics is a book series devoted to all areas of mathematics, pure and applied. The series emphasizes research monographs describing the latest advances. Edited volumes that focus on areas that have seen dramatic progress, or are of special interest, are encouraged as well.
Book Synopsis WIN -- Women in Numbers by : Alina Carmen Cojocaru
Download or read book WIN -- Women in Numbers written by Alina Carmen Cojocaru and published by American Mathematical Soc.. This book was released on 2011 with total page 300 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is a collection of papers on number theory which evolved out of the workshop WIN-Women In Numbers, held November 2-7, 2008. It includes articles showcasing outcomes from collaborative research initiated during the workshop as well as survey papers aimed at introducing graduate students and recent PhDs to important research topics in number theory.
Book Synopsis Arithmetic Algebraic Geometry by : Brian David Conrad
Download or read book Arithmetic Algebraic Geometry written by Brian David Conrad and published by American Mathematical Soc.. This book was released on with total page 588 pages. Available in PDF, EPUB and Kindle. Book excerpt: The articles in this volume are expanded versions of lectures delivered at the Graduate Summer School and at the Mentoring Program for Women in Mathematics held at the Institute for Advanced Study/Park City Mathematics Institute. The theme of the program was arithmetic algebraic geometry. The choice of lecture topics was heavily influenced by the recent spectacular work of Wiles on modular elliptic curves and Fermat's Last Theorem. The main emphasis of the articles in the volume is on elliptic curves, Galois representations, and modular forms. One lecture series offers an introduction to these objects. The others discuss selected recent results, current research, and open problems and conjectures. The book would be a suitable text for an advanced graduate topics course in arithmetic algebraic geometry.
Book Synopsis The Conference on L-Functions by : Lin Weng
Download or read book The Conference on L-Functions written by Lin Weng and published by World Scientific. This book was released on 2007 with total page 383 pages. Available in PDF, EPUB and Kindle. Book excerpt: This invaluable volume collects papers written by many of the world''s top experts on L -functions. It not only covers a wide range of topics from algebraic and analytic number theories, automorphic forms, to geometry and mathematical physics, but also treats the theory as a whole. The contributions reflect the latest, most advanced and most important aspects of L- functions. In particular, it contains Hida''s lecture notes at the conference and at the Eigenvariety semester in Harvard University and Weng''s detailed account of his works on high rank zeta functions and non-abelian L -functions. Sample Chapter(s). Chapter 1: Quantum Maass Forms (435 KB). Contents: Quantum Maass Forms (R Bruggeman); o-invariant of p -Adic L -Functions (H Hida); Siegel Modular Forms of Weight Three and Conjectural Correspondence of Shimura Type and Langlands Type (T Ibukiyama); Convolutions of Fourier Coefficients of Cusp Forms and the Circle Method (M Jutila); On an Extension of the Derivation Relation for Multiple Zeta Values (M Kaneko); On Symmetric Powers of Cusp Forms on GL 2 (H H Kim); Zeta Functions of Root Systems (Y Komori et al.); Sums of Kloosterman Sums Revisted (Y Motohashi); The LindelAf Class of L -Functions (K Murty); A Proof of the Riemann Hypothesis for the Weng Zeta Function of Rank 3 for the Rationals (M Suzuki); Elliptic Curves Arising from the Spectral Zeta Function for Non-Commutative Harmonic Oscillators and o 0 (4)-Modular Forms (K Kimoto & M Wakayama); A Geometric Approach to L -Functions (L Weng). Readership: Graduate students, lecturers, and active researchers in various branches of mathematics, such as algebra, analysis, geometry and mathematical physics."
Download or read book Cyclotomic Fields written by S. Lang and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 264 pages. Available in PDF, EPUB and Kindle. Book excerpt: Kummer's work on cyclotomic fields paved the way for the development of algebraic number theory in general by Dedekind, Weber, Hensel, Hilbert, Takagi, Artin and others. However, the success of this general theory has tended to obscure special facts proved by Kummer about cyclotomic fields which lie deeper than the general theory. For a long period in the 20th century this aspect of Kummer's work seems to have been largely forgotten, except for a few papers, among which are those by Pollaczek [Po], Artin-Hasse [A-H] and Vandiver [Va]. In the mid 1950's, the theory of cyclotomic fields was taken up again by Iwasawa and Leopoldt. Iwasawa viewed cyclotomic fields as being analogues for number fields of the constant field extensions of algebraic geometry, and wrote a great sequence of papers investigating towers of cyclotomic fields, and more generally, Galois extensions of number fields whose Galois group is isomorphic to the additive group of p-adic integers. Leopoldt concentrated on a fixed cyclotomic field, and established various p-adic analogues of the classical complex analytic class number formulas. In particular, this led him to introduce, with Kubota, p-adic analogues of the complex L-functions attached to cyclotomic extensions of the rationals. Finally, in the late 1960's, Iwasawa [Iw 1 I] . made the fundamental discovery that there was a close connection between his work on towers of cyclotomic fields and these p-adic L-functions of Leopoldt-Kubota.
Book Synopsis Primes of the Form x2+ny2 : Fermat, Class Field Theory, and Complex Multiplication. Third Edition with Solutions by : David A. Cox
Download or read book Primes of the Form x2+ny2 : Fermat, Class Field Theory, and Complex Multiplication. Third Edition with Solutions written by David A. Cox and published by American Mathematical Soc.. This book was released on 2022-11-16 with total page 551 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book studies when a prime p can be written in the form x2+ny2. It begins at an elementary level with results of Fermat and Euler and then discusses the work of Lagrange, Legendre and Gauss on quadratic reciprocity and the genus theory of quadratic forms. After exploring cubic and biquadratic reciprocity, the pace quickens with the introduction of algebraic number fields and class field theory. This leads to the concept of ring class field and a complete but abstract solution of p=x2+ny2. To make things more concrete, the book introduces complex multiplication and modular functions to give a constructive solution. The book ends with a discussion of elliptic curves and Shimura reciprocity. Along the way the reader will encounter some compelling history and marvelous formulas, together with a complete solution of the class number one problem for imaginary quadratic fields. The book is accessible to readers with modest backgrounds in number theory. In the third edition, the numerous exercises have been thoroughly checked and revised, and as a special feature, complete solutions are included. This makes the book especially attractive to readers who want to get an active knowledge of this wonderful part of mathematics.
Book Synopsis Arithmetic Theory of Elliptic Curves by : J. Coates
Download or read book Arithmetic Theory of Elliptic Curves written by J. Coates and published by Springer. This book was released on 2006-11-14 with total page 269 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume contains the expanded versions of the lectures given by the authors at the C.I.M.E. instructional conference held in Cetraro, Italy, from July 12 to 19, 1997. The papers collected here are broad surveys of the current research in the arithmetic of elliptic curves, and also contain several new results which cannot be found elsewhere in the literature. Owing to clarity and elegance of exposition, and to the background material explicitly included in the text or quoted in the references, the volume is well suited to research students as well as to senior mathematicians.
Book Synopsis Research Directions in Number Theory by : Jennifer S. Balakrishnan
Download or read book Research Directions in Number Theory written by Jennifer S. Balakrishnan and published by Springer. This book was released on 2019-08-01 with total page 208 pages. Available in PDF, EPUB and Kindle. Book excerpt: These proceedings collect several number theory articles, most of which were written in connection to the workshop WIN4: Women in Numbers, held in August 2017, at the Banff International Research Station (BIRS) in Banff, Alberta, Canada. It collects papers disseminating research outcomes from collaborations initiated during the workshop as well as other original research contributions involving participants of the WIN workshops. The workshop and this volume are part of the WIN network, aimed at highlighting the research of women and gender minorities in number theory as well as increasing their participation and boosting their potential collaborations in number theory and related fields.