Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Zeta Functions Attached To The Principal Spherical Series For A Class Of Symmetric Spaces 1 Structure Theory
Download Zeta Functions Attached To The Principal Spherical Series For A Class Of Symmetric Spaces 1 Structure Theory full books in PDF, epub, and Kindle. Read online Zeta Functions Attached To The Principal Spherical Series For A Class Of Symmetric Spaces 1 Structure Theory ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis Asymptotic Behaviour of Tame Harmonic Bundles and an Application to Pure Twistor $D$-Modules, Part 1 by : Takuro Mochizuki
Download or read book Asymptotic Behaviour of Tame Harmonic Bundles and an Application to Pure Twistor $D$-Modules, Part 1 written by Takuro Mochizuki and published by American Mathematical Soc.. This book was released on 2007 with total page 344 pages. Available in PDF, EPUB and Kindle. Book excerpt: The author studies the asymptotic behaviour of tame harmonic bundles. First he proves a local freeness of the prolongment of deformed holomorphic bundle by an increasing order. Then he obtains the polarized mixed twistor structure from the data on the divisors. As one of the applications, he obtains the norm estimate of holomorphic or flat sections by weight filtrations of the monodromies. As another application, the author establishes the correspondence of semisimple regular holonomic $D$-modules and polarizable pure imaginary pure twistor $D$-modules through tame pure imaginary harmonic bundles, which is a conjecture of C. Sabbah. Then the regular holonomic version of M. Kashiwara's conjecture follows from the results of Sabbah and the author.
Book Synopsis The Spherical Transform on Projective Limits of Symmetric Spaces by : Andrew Robert Sinton
Download or read book The Spherical Transform on Projective Limits of Symmetric Spaces written by Andrew Robert Sinton and published by . This book was released on 2005 with total page 130 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Mathematical Reviews written by and published by . This book was released on 2006 with total page 1052 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis Summaries of Projects Completed by : National Science Foundation (U.S.)
Download or read book Summaries of Projects Completed written by National Science Foundation (U.S.) and published by . This book was released on with total page 1108 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis Summaries of Projects Completed in Fiscal Year ... by :
Download or read book Summaries of Projects Completed in Fiscal Year ... written by and published by . This book was released on 1978 with total page 1090 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis Summaries of Projects Completed in Fiscal Year ... by : National Science Foundation (U.S.)
Download or read book Summaries of Projects Completed in Fiscal Year ... written by National Science Foundation (U.S.) and published by . This book was released on 1978 with total page 1092 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis Zeta Integrals, Schwartz Spaces and Local Functional Equations by : Wen-Wei Li
Download or read book Zeta Integrals, Schwartz Spaces and Local Functional Equations written by Wen-Wei Li and published by Springer. This book was released on 2018-11-02 with total page 148 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book focuses on a conjectural class of zeta integrals which arose from a program born in the work of Braverman and Kazhdan around the year 2000, the eventual goal being to prove the analytic continuation and functional equation of automorphic L-functions. Developing a general framework that could accommodate Schwartz spaces and the corresponding zeta integrals, the author establishes a formalism, states desiderata and conjectures, draws implications from these assumptions, and shows how known examples fit into this framework, supporting Sakellaridis' vision of the subject. The collected results, both old and new, and the included extensive bibliography, will be valuable to anyone who wishes to understand this program, and to those who are already working on it and want to overcome certain frequently occurring technical difficulties.
Book Synopsis Spectral Methods of Automorphic Forms by : Henryk Iwaniec
Download or read book Spectral Methods of Automorphic Forms written by Henryk Iwaniec and published by American Mathematical Society, Revista Matemática Iberoamericana (RMI), Madrid, Spain. This book was released on 2021-11-17 with total page 220 pages. Available in PDF, EPUB and Kindle. Book excerpt: Automorphic forms are one of the central topics of analytic number theory. In fact, they sit at the confluence of analysis, algebra, geometry, and number theory. In this book, Henryk Iwaniec once again displays his penetrating insight, powerful analytic techniques, and lucid writing style. The first edition of this book was an underground classic, both as a textbook and as a respected source for results, ideas, and references. Iwaniec treats the spectral theory of automorphic forms as the study of the space of $L^2$ functions on the upper half plane modulo a discrete subgroup. Key topics include Eisenstein series, estimates of Fourier coefficients, Kloosterman sums, the Selberg trace formula and the theory of small eigenvalues. Henryk Iwaniec was awarded the 2002 Cole Prize for his fundamental contributions to number theory.
Book Synopsis Reviews in Number Theory 1984-96 by :
Download or read book Reviews in Number Theory 1984-96 written by and published by . This book was released on 1997 with total page 1098 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis The Riemann Zeta-Function by : Anatoly A. Karatsuba
Download or read book The Riemann Zeta-Function written by Anatoly A. Karatsuba and published by Walter de Gruyter. This book was released on 2011-05-03 with total page 409 pages. Available in PDF, EPUB and Kindle. Book excerpt: The aim of the series is to present new and important developments in pure and applied mathematics. Well established in the community over two decades, it offers a large library of mathematics including several important classics. The volumes supply thorough and detailed expositions of the methods and ideas essential to the topics in question. In addition, they convey their relationships to other parts of mathematics. The series is addressed to advanced readers wishing to thoroughly study the topic. Editorial Board Lev Birbrair, Universidade Federal do Ceará, Fortaleza, Brasil Victor P. Maslov, Russian Academy of Sciences, Moscow, Russia Walter D. Neumann, Columbia University, New York, USA Markus J. Pflaum, University of Colorado, Boulder, USA Dierk Schleicher, Jacobs University, Bremen, Germany
Book Synopsis Eisenstein Series and Automorphic Representations by : Philipp Fleig
Download or read book Eisenstein Series and Automorphic Representations written by Philipp Fleig and published by Cambridge Studies in Advanced. This book was released on 2018-07-05 with total page 587 pages. Available in PDF, EPUB and Kindle. Book excerpt: Detailed exposition of automorphic representations and their relation to string theory, for mathematicians and theoretical physicists.
Book Synopsis Cohomological Theory of Dynamical Zeta Functions by : Andreas Juhl
Download or read book Cohomological Theory of Dynamical Zeta Functions written by Andreas Juhl and published by Birkhäuser. This book was released on 2012-12-06 with total page 712 pages. Available in PDF, EPUB and Kindle. Book excerpt: Dynamical zeta functions are associated to dynamical systems with a countable set of periodic orbits. The dynamical zeta functions of the geodesic flow of lo cally symmetric spaces of rank one are known also as the generalized Selberg zeta functions. The present book is concerned with these zeta functions from a cohomological point of view. Originally, the Selberg zeta function appeared in the spectral theory of automorphic forms and were suggested by an analogy between Weil's explicit formula for the Riemann zeta function and Selberg's trace formula ([261]). The purpose of the cohomological theory is to understand the analytical properties of the zeta functions on the basis of suitable analogs of the Lefschetz fixed point formula in which periodic orbits of the geodesic flow take the place of fixed points. This approach is parallel to Weil's idea to analyze the zeta functions of pro jective algebraic varieties over finite fields on the basis of suitable versions of the Lefschetz fixed point formula. The Lefschetz formula formalism shows that the divisors of the rational Hassc-Wcil zeta functions are determined by the spectra of Frobenius operators on l-adic cohomology.
Book Synopsis Lectures on Field Theory and Topology by : Daniel S. Freed
Download or read book Lectures on Field Theory and Topology written by Daniel S. Freed and published by American Mathematical Soc.. This book was released on 2019-08-23 with total page 202 pages. Available in PDF, EPUB and Kindle. Book excerpt: These lectures recount an application of stable homotopy theory to a concrete problem in low energy physics: the classification of special phases of matter. While the joint work of the author and Michael Hopkins is a focal point, a general geometric frame of reference on quantum field theory is emphasized. Early lectures describe the geometric axiom systems introduced by Graeme Segal and Michael Atiyah in the late 1980s, as well as subsequent extensions. This material provides an entry point for mathematicians to delve into quantum field theory. Classification theorems in low dimensions are proved to illustrate the framework. The later lectures turn to more specialized topics in field theory, including the relationship between invertible field theories and stable homotopy theory, extended unitarity, anomalies, and relativistic free fermion systems. The accompanying mathematical explanations touch upon (higher) category theory, duals to the sphere spectrum, equivariant spectra, differential cohomology, and Dirac operators. The outcome of computations made using the Adams spectral sequence is presented and compared to results in the condensed matter literature obtained by very different means. The general perspectives and specific applications fuse into a compelling story at the interface of contemporary mathematics and theoretical physics.
Book Synopsis Local Zeta Functions Attached to the Minimal Spherical Series for a Class of Symmetric Spaces by : Nicole Bopp
Download or read book Local Zeta Functions Attached to the Minimal Spherical Series for a Class of Symmetric Spaces written by Nicole Bopp and published by American Mathematical Soc.. This book was released on 2005 with total page 233 pages. Available in PDF, EPUB and Kindle. Book excerpt: The aim of this paper is to prove a functional equation for a local zeta function attached to the minimal spherical series for a class of real reductive symmetric spaces. These symmetric spaces are obtained as follows. We consider a graded simple real Lie algebra $\widetilde{\mathfrak g}$ of the form $\widetilde{\mathfrak g}=V^-\oplus \mathfrak g\oplus V^+$, where $[\mathfrak g,V^+]\subset V^+$, $[\mathfrak g,V^-]\subset V^-$ and $[V^-,V^+]\subset \mathfrak g$. If the graded algebra is regular, then a suitable group $G$ with Lie algebra $\mathfrak g$ has a finite number of open orbits in $V^+$, each of them is a realization of a symmetric space $G\slash H_p$.The functional equation gives a matrix relation between the local zeta functions associated to $H_p$-invariant distributions vectors for the same minimal spherical representation of $G$. This is a generalization of the functional equation obtained by Godement} and Jacquet for the local zeta function attached to a coefficient of a representation of $GL(n,\mathbb R)$.
Book Synopsis Dynamics: Topology and Numbers by : Pieter Moree
Download or read book Dynamics: Topology and Numbers written by Pieter Moree and published by American Mathematical Soc.. This book was released on 2020-02-12 with total page 360 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume contains the proceedings of the conference Dynamics: Topology and Numbers, held from July 2–6, 2018, at the Max Planck Institute for Mathematics, Bonn, Germany. The papers cover diverse fields of mathematics with a unifying theme of relation to dynamical systems. These include arithmetic geometry, flat geometry, complex dynamics, graph theory, relations to number theory, and topological dynamics. The volume is dedicated to the memory of Sergiy Kolyada and also contains some personal accounts of his life and mathematics.
Download or read book Physics Briefs written by and published by . This book was released on 1991 with total page 888 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis Symmetric Functions and Hall Polynomials by : Ian Grant Macdonald
Download or read book Symmetric Functions and Hall Polynomials written by Ian Grant Macdonald and published by Oxford University Press. This book was released on 1998 with total page 496 pages. Available in PDF, EPUB and Kindle. Book excerpt: This reissued classic text is the acclaimed second edition of Professor Ian Macdonald's groundbreaking monograph on symmetric functions and Hall polynomials. The first edition was published in 1979, before being significantly expanded into the present edition in 1995. This text is widely regarded as the best source of information on Hall polynomials and what have come to be known as Macdonald polynomials, central to a number of key developments in mathematics and mathematical physics in the 21st century Macdonald polynomials gave rise to the subject of double affine Hecke algebras (or Cherednik algebras) important in representation theory. String theorists use Macdonald polynomials to attack the so-called AGT conjectures. Macdonald polynomials have been recently used to construct knot invariants. They are also a central tool for a theory of integrable stochastic models that have found a number of applications in probability, such as random matrices, directed polymers in random media, driven lattice gases, and so on. Macdonald polynomials have become a part of basic material that a researcher simply must know if (s)he wants to work in one of the above domains, ensuring this new edition will appeal to a very broad mathematical audience. Featuring a new foreword by Professor Richard Stanley of MIT.