Author : Vladimir Serdarushich
Publisher : Createspace Independent Publishing Platform
ISBN 13 : 9781523688661
Total Pages : 184 pages
Book Rating : 4.6/5 (886 download)
Book Synopsis Vectors and Coordinate Geometry by : Vladimir Serdarushich
Download or read book Vectors and Coordinate Geometry written by Vladimir Serdarushich and published by Createspace Independent Publishing Platform. This book was released on 2016-02-24 with total page 184 pages. Available in PDF, EPUB and Kindle. Book excerpt: vectors in plane and space, length of vector, magnitude of vector, collinear vectors, opposite vectors, coplanar vectors, addition of vectors, triangle rule and parallelogram rule, zero or null vector, subtraction of vectors, scalar multiplication, multiplication of vector by scalar, unit vector, linear combination of vectors, linear dependence of vectors, vectors and coordinate system , Cartesian vectors, vectors in coordinate plane, vectors two dimensional system of coordinates, radius vector, position vector, vector components, vectors in two-dimensional system examples, vectors in three-dimensional space in terms of Cartesian coordinates, angles of vectors in relation to coordinate axes, directional cosines, scalar components of vector, unit vector of vector, vectors in three-dimensional coordinate system examples, scalar product, dot product, inner product, perpendicularity of vectors, different position of two vectors, values of scalar product, square of magnitude of vector, scalar product of unit vector, scalar or dot product properties, scalar product in coordinate system, angle between vectors in coordinate plane, projection of vector in direction of another vector, scalar and vector components, vector product or cross product, vector product, right-handed system, example of vector product in physics, condition for two vectors to be parallel, condition for two vectors to be perpendicular, vector products of standard unit vectors, vector product in component form, mixed product or scalar triple product definition, mixed product properties, condition for three vectors to be coplanar, mixed product, scalar triple product, mixed product expressed in terms of components, vector product and mixed product use examples,coordinate geometry, points lines and planes in three-dimensional coordinate system represented by vectors, points lines and planes in three-dimensional space, position of two lines in 3D space, coplanar lines, skew lines, line and plane in three-dimensional space, two planes in three-dimensional space, line of intersection of two planes, orthogonality of line and plane and, orthogonal projection of point on plane, distance from point to plane, angle between line and plane, angle between two planes, line in three-dimensional coordinate system, equation of line in space, vector equation of line, parametric equation of line, equation of line defined by direction vector and point, symmetric equation of line, distance between two points, orthogonal projection of line in space on xy coordinate plane, line in 3D space examples, angle between lines, condition for intersection of two lines in 3D space, equations of plane in coordinate space, equations of plane in 3D coordinate system, intercept form of equation of plane, equation of plane through three points, distance between point and plane, angle between two planes, line and plane in space, line of intersection of two planes, projection of line on coordinate planes, two planes of which given line is their intersection, intersection point of line and plane, sheaf or pencil of planes, angle between line and plane, orthogonal projections, point line and plane distances, condition for line and plane to be perpendicular, line perpendicular to given plane, plane perpendicular to given line, projection of point on plane in space, projection of point on line in space, line perpendicular to given line, plane parallel with two skew lines, plane parallel with two parallel lines, distance between point and line in 3D space, distance between point and plane in space example, distance between parallel lines, distance between skew lines,