Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Unsolved Problems In Geometry
Download Unsolved Problems In Geometry full books in PDF, epub, and Kindle. Read online Unsolved Problems In Geometry ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis Unsolved Problems in Geometry by : Hallard T. Croft
Download or read book Unsolved Problems in Geometry written by Hallard T. Croft and published by New York : Springer-Verlag. This book was released on 1991 with total page 224 pages. Available in PDF, EPUB and Kindle. Book excerpt: For mathematicians or others who wish to keep up to date with the state of the art of geometrical problems, this collection of problems that are easy to state and understand but are as yet unsolved covers a wide variety of topics including convex sets, polyhedra, packing and covering, tiling, and combinatorial problems. Annotation copyrighted by Book News, Inc., Portland, OR.
Book Synopsis Unsolved Problems in Geometry by : Hallard T. Croft
Download or read book Unsolved Problems in Geometry written by Hallard T. Croft and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 213 pages. Available in PDF, EPUB and Kindle. Book excerpt: Mathematicians and non-mathematicians alike have long been fascinated by geometrical problems, particularly those that are intuitive in the sense of being easy to state, perhaps with the aid of a simple diagram. Each section in the book describes a problem or a group of related problems. Usually the problems are capable of generalization of variation in many directions. The book can be appreciated at many levels and is intended for everyone from amateurs to research mathematicians.
Book Synopsis Old and New Unsolved Problems in Plane Geometry and Number Theory by : Victor Klee
Download or read book Old and New Unsolved Problems in Plane Geometry and Number Theory written by Victor Klee and published by American Mathematical Soc.. This book was released on 2020-07-31 with total page 352 pages. Available in PDF, EPUB and Kindle. Book excerpt: Victor Klee and Stan Wagon discuss some of the unsolved problems in number theory and geometry, many of which can be understood by readers with a very modest mathematical background. The presentation is organized around 24 central problems, many of which are accompanied by other, related problems. The authors place each problem in its historical and mathematical context, and the discussion is at the level of undergraduate mathematics. Each problem section is presented in two parts. The first gives an elementary overview discussing the history and both the solved and unsolved variants of the problem. The second part contains more details, including a few proofs of related results, a wider and deeper survey of what is known about the problem and its relatives, and a large collection of references. Both parts contain exercises, with solutions. The book is aimed at both teachers and students of mathematics who want to know more about famous unsolved problems.
Book Synopsis Research Problems in Discrete Geometry by : Peter Brass
Download or read book Research Problems in Discrete Geometry written by Peter Brass and published by Springer Science & Business Media. This book was released on 2006-01-27 with total page 507 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is the result of a 25-year-old project and comprises a collection of more than 500 attractive open problems in the field. The largely self-contained chapters provide a broad overview of discrete geometry, along with historical details and the most important partial results related to these problems. This book is intended as a source book for both professional mathematicians and graduate students who love beautiful mathematical questions, are willing to spend sleepless nights thinking about them, and who would like to get involved in mathematical research.
Book Synopsis Open Problems in the Geometry and Analysis of Banach Spaces by : Antonio J. Guirao
Download or read book Open Problems in the Geometry and Analysis of Banach Spaces written by Antonio J. Guirao and published by Springer. This book was released on 2016-07-26 with total page 179 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is an collection of some easily-formulated problems that remain open in the study of the geometry and analysis of Banach spaces. Assuming the reader has a working familiarity with the basic results of Banach space theory, the authors focus on concepts of basic linear geometry, convexity, approximation, optimization, differentiability, renormings, weak compact generating, Schauder bases and biorthogonal systems, fixed points, topology and nonlinear geometry. The main purpose of this work is to help in convincing young researchers in Functional Analysis that the theory of Banach spaces is a fertile field of research, full of interesting open problems. Inside the Banach space area, the text should help expose young researchers to the depth and breadth of the work that remains, and to provide the perspective necessary to choose a direction for further study. Some of the problems are longstanding open problems, some are recent, some are more important and some are only local problems. Some would require new ideas, some may be resolved with only a subtle combination of known facts. Regardless of their origin or longevity, each of these problems documents the need for further research in this area.
Book Synopsis Open Problems in Mathematics by : John Forbes Nash, Jr.
Download or read book Open Problems in Mathematics written by John Forbes Nash, Jr. and published by Springer. This book was released on 2018-05-31 with total page 543 pages. Available in PDF, EPUB and Kindle. Book excerpt: The goal in putting together this unique compilation was to present the current status of the solutions to some of the most essential open problems in pure and applied mathematics. Emphasis is also given to problems in interdisciplinary research for which mathematics plays a key role. This volume comprises highly selected contributions by some of the most eminent mathematicians in the international mathematical community on longstanding problems in very active domains of mathematical research. A joint preface by the two volume editors is followed by a personal farewell to John F. Nash, Jr. written by Michael Th. Rassias. An introduction by Mikhail Gromov highlights some of Nash’s legendary mathematical achievements. The treatment in this book includes open problems in the following fields: algebraic geometry, number theory, analysis, discrete mathematics, PDEs, differential geometry, topology, K-theory, game theory, fluid mechanics, dynamical systems and ergodic theory, cryptography, theoretical computer science, and more. Extensive discussions surrounding the progress made for each problem are designed to reach a wide community of readers, from graduate students and established research mathematicians to physicists, computer scientists, economists, and research scientists who are looking to develop essential and modern new methods and theories to solve a variety of open problems.
Download or read book Intuitive Geometry written by Imre Bárány and published by . This book was released on 1997 with total page 456 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis Open Middle Math by : Robert Kaplinsky
Download or read book Open Middle Math written by Robert Kaplinsky and published by Taylor & Francis. This book was released on 2023-10-10 with total page 193 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is an amazing resource for teachers who are struggling to help students develop both procedural fluency and conceptual understanding.. --Dr. Margaret (Peg) Smith, co-author of5 Practices for Orchestrating Productive Mathematical Discussions Robert Kaplinsky, the co-creator of Open Middle math problems, brings hisnew class of tasks designed to stimulate deeper thinking and lively discussion among middle and high school students in Open Middle Math: Problems That Unlock Student Thinking, Grades 6-12. The problems are characterized by a closed beginning,- meaning all students start with the same initial problem, and a closed end,- meaning there is only one correct or optimal answer. The key is that the middle is open- in the sense that there are multiple ways to approach and ultimately solve the problem. These tasks have proven enormously popular with teachers looking to assess and deepen student understanding, build student stamina, and energize their classrooms. Professional Learning Resource for Teachers: Open Middle Math is an indispensable resource for educators interested in teaching student-centered mathematics in middle and high schools consistent with the national and state standards. Sample Problems at Each Grade: The book demonstrates the Open Middle concept with sample problems ranging from dividing fractions at 6th grade to algebra, trigonometry, and calculus. Teaching Tips for Student-Centered Math Classrooms: Kaplinsky shares guidance on choosing problems, designing your own math problems, and teaching for multiple purposes, including formative assessment, identifying misconceptions, procedural fluency, and conceptual understanding. Adaptable and Accessible Math: The tasks can be solved using various strategies at different levels of sophistication, which means all students can access the problems and participate in the conversation. Open Middle Math will help math teachers transform the 6th -12th grade classroom into an environment focused on problem solving, student dialogue, and critical thinking.
Book Synopsis Selected Unsolved Problems in Coding Theory by : David Joyner
Download or read book Selected Unsolved Problems in Coding Theory written by David Joyner and published by Springer Science & Business Media. This book was released on 2011-08-26 with total page 211 pages. Available in PDF, EPUB and Kindle. Book excerpt: Using an original mode of presentation, and emphasizing the computational nature of the subject, this book explores a number of the unsolved problems that still exist in coding theory. A well-established and highly relevant branch of mathematics, the theory of error-correcting codes is concerned with reliably transmitting data over a ‘noisy’ channel. Despite frequent use in a range of contexts, the subject still contains interesting unsolved problems that have resisted solution by some of the most prominent mathematicians of recent decades. Employing Sage—a free open-source mathematics software system—to illustrate ideas, this book is intended for graduate students and researchers in algebraic coding theory. The work may be used as supplementary reading material in a graduate course on coding theory or for self-study.
Download or read book Love and Math written by Edward Frenkel and published by Basic Books. This book was released on 2013-10-01 with total page 314 pages. Available in PDF, EPUB and Kindle. Book excerpt: An awesome, globe-spanning, and New York Times bestselling journey through the beauty and power of mathematics What if you had to take an art class in which you were only taught how to paint a fence? What if you were never shown the paintings of van Gogh and Picasso, weren't even told they existed? Alas, this is how math is taught, and so for most of us it becomes the intellectual equivalent of watching paint dry. In Love and Math, renowned mathematician Edward Frenkel reveals a side of math we've never seen, suffused with all the beauty and elegance of a work of art. In this heartfelt and passionate book, Frenkel shows that mathematics, far from occupying a specialist niche, goes to the heart of all matter, uniting us across cultures, time, and space. Love and Math tells two intertwined stories: of the wonders of mathematics and of one young man's journey learning and living it. Having braved a discriminatory educational system to become one of the twenty-first century's leading mathematicians, Frenkel now works on one of the biggest ideas to come out of math in the last 50 years: the Langlands Program. Considered by many to be a Grand Unified Theory of mathematics, the Langlands Program enables researchers to translate findings from one field to another so that they can solve problems, such as Fermat's last theorem, that had seemed intractable before. At its core, Love and Math is a story about accessing a new way of thinking, which can enrich our lives and empower us to better understand the world and our place in it. It is an invitation to discover the magic hidden universe of mathematics.
Book Synopsis Unsolved Problems in Number Theory by : Richard Guy
Download or read book Unsolved Problems in Number Theory written by Richard Guy and published by Springer Science & Business Media. This book was released on 2013-06-29 with total page 176 pages. Available in PDF, EPUB and Kindle. Book excerpt: Second edition sold 2241 copies in N.A. and 1600 ROW. New edition contains 50 percent new material.
Book Synopsis Some Nonlinear Problems in Riemannian Geometry by : Thierry Aubin
Download or read book Some Nonlinear Problems in Riemannian Geometry written by Thierry Aubin and published by Springer Science & Business Media. This book was released on 2013-03-09 with total page 414 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book deals with such important subjects as variational methods, the continuity method, parabolic equations on fiber bundles, ideas concerning points of concentration, blowing-up technique, geometric and topological methods. It explores important geometric problems that are of interest to many mathematicians and scientists but have only recently been partially solved.
Book Synopsis Problems and Solutions in Euclidean Geometry by : M. N. Aref
Download or read book Problems and Solutions in Euclidean Geometry written by M. N. Aref and published by Courier Corporation. This book was released on 2010-01-01 with total page 274 pages. Available in PDF, EPUB and Kindle. Book excerpt: Based on classical principles, this book is intended for a second course in Euclidean geometry and can be used as a refresher. Each chapter covers a different aspect of Euclidean geometry, lists relevant theorems and corollaries, and states and proves many propositions. Includes more than 200 problems, hints, and solutions. 1968 edition.
Download or read book Erdös on Graphs written by Fan Chung and published by CRC Press. This book was released on 2020-08-26 with total page 155 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is a tribute to Paul Erdos, the wandering mathematician once described as the "prince of problem solvers and the absolute monarch of problem posers." It examines the legacy of open problems he left to the world after his death in 1996.
Book Synopsis Open Problems in Arithmetic Algebraic Geometry by : Frans Oort
Download or read book Open Problems in Arithmetic Algebraic Geometry written by Frans Oort and published by . This book was released on 2019 with total page 331 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis Problems in Applied Mathematics by : Murray S. Klamkin
Download or read book Problems in Applied Mathematics written by Murray S. Klamkin and published by SIAM. This book was released on 1990-01-01 with total page 612 pages. Available in PDF, EPUB and Kindle. Book excerpt: A compilation of 380 of SIAM Review's most interesting problems dating back to the journal's inception in 1959.
Book Synopsis Advanced Problems in Mathematics by : Stephen Siklos
Download or read book Advanced Problems in Mathematics written by Stephen Siklos and published by . This book was released on 2019-10-16 with total page 188 pages. Available in PDF, EPUB and Kindle. Book excerpt: This new and expanded edition is intended to help candidates prepare for entrance examinations in mathematics and scientific subjects, including STEP (Sixth Term Examination Paper). STEP is an examination used by Cambridge Colleges for conditional offers in mathematics. They are also used by some other UK universities and many mathematics departments recommend that their applicants practice on the past papers even if they do not take the examination. Advanced Problems in Mathematics bridges the gap between school and university mathematics, and prepares students for an undergraduate mathematics course. The questions analysed in this book are all based on past STEP questions and each question is followed by a comment and a full solution. The comments direct the reader's attention to key points and put the question in its true mathematical context. The solutions point students to the methodology required to address advanced mathematical problems critically and independently. This book is a must read for any student wishing to apply to scientific subjects at university level and for anyone interested in advanced mathematics.