Understanding Mathematical Proof

Download Understanding Mathematical Proof PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1466514914
Total Pages : 408 pages
Book Rating : 4.4/5 (665 download)

DOWNLOAD NOW!


Book Synopsis Understanding Mathematical Proof by : John Taylor

Download or read book Understanding Mathematical Proof written by John Taylor and published by CRC Press. This book was released on 2016-04-19 with total page 408 pages. Available in PDF, EPUB and Kindle. Book excerpt: The notion of proof is central to mathematics yet it is one of the most difficult aspects of the subject to teach and master. In particular, undergraduate mathematics students often experience difficulties in understanding and constructing proofs.Understanding Mathematical Proof describes the nature of mathematical proof, explores the various techn

Understanding Mathematical Proof

Download Understanding Mathematical Proof PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1466514906
Total Pages : 416 pages
Book Rating : 4.4/5 (665 download)

DOWNLOAD NOW!


Book Synopsis Understanding Mathematical Proof by : John Taylor

Download or read book Understanding Mathematical Proof written by John Taylor and published by CRC Press. This book was released on 2014-03-21 with total page 416 pages. Available in PDF, EPUB and Kindle. Book excerpt: The notion of proof is central to mathematics yet it is one of the most difficult aspects of the subject to teach and master. In particular, undergraduate mathematics students often experience difficulties in understanding and constructing proofs. Understanding Mathematical Proof describes the nature of mathematical proof, explores the various techniques that mathematicians adopt to prove their results, and offers advice and strategies for constructing proofs. It will improve students’ ability to understand proofs and construct correct proofs of their own. The first chapter of the text introduces the kind of reasoning that mathematicians use when writing their proofs and gives some example proofs to set the scene. The book then describes basic logic to enable an understanding of the structure of both individual mathematical statements and whole mathematical proofs. It also explains the notions of sets and functions and dissects several proofs with a view to exposing some of the underlying features common to most mathematical proofs. The remainder of the book delves further into different types of proof, including direct proof, proof using contrapositive, proof by contradiction, and mathematical induction. The authors also discuss existence and uniqueness proofs and the role of counter examples.

How to Prove It

Download How to Prove It PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 0521861241
Total Pages : 401 pages
Book Rating : 4.5/5 (218 download)

DOWNLOAD NOW!


Book Synopsis How to Prove It by : Daniel J. Velleman

Download or read book How to Prove It written by Daniel J. Velleman and published by Cambridge University Press. This book was released on 2006-01-16 with total page 401 pages. Available in PDF, EPUB and Kindle. Book excerpt: Many students have trouble the first time they take a mathematics course in which proofs play a significant role. This new edition of Velleman's successful text will prepare students to make the transition from solving problems to proving theorems by teaching them the techniques needed to read and write proofs. The book begins with the basic concepts of logic and set theory, to familiarize students with the language of mathematics and how it is interpreted. These concepts are used as the basis for a step-by-step breakdown of the most important techniques used in constructing proofs. The author shows how complex proofs are built up from these smaller steps, using detailed 'scratch work' sections to expose the machinery of proofs about the natural numbers, relations, functions, and infinite sets. To give students the opportunity to construct their own proofs, this new edition contains over 200 new exercises, selected solutions, and an introduction to Proof Designer software. No background beyond standard high school mathematics is assumed. This book will be useful to anyone interested in logic and proofs: computer scientists, philosophers, linguists, and of course mathematicians.

Proofs from THE BOOK

Download Proofs from THE BOOK PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 3662223430
Total Pages : 194 pages
Book Rating : 4.6/5 (622 download)

DOWNLOAD NOW!


Book Synopsis Proofs from THE BOOK by : Martin Aigner

Download or read book Proofs from THE BOOK written by Martin Aigner and published by Springer Science & Business Media. This book was released on 2013-06-29 with total page 194 pages. Available in PDF, EPUB and Kindle. Book excerpt: According to the great mathematician Paul Erdös, God maintains perfect mathematical proofs in The Book. This book presents the authors candidates for such "perfect proofs," those which contain brilliant ideas, clever connections, and wonderful observations, bringing new insight and surprising perspectives to problems from number theory, geometry, analysis, combinatorics, and graph theory. As a result, this book will be fun reading for anyone with an interest in mathematics.

Book of Proof

Download Book of Proof PDF Online Free

Author :
Publisher :
ISBN 13 : 9780989472111
Total Pages : 314 pages
Book Rating : 4.4/5 (721 download)

DOWNLOAD NOW!


Book Synopsis Book of Proof by : Richard H. Hammack

Download or read book Book of Proof written by Richard H. Hammack and published by . This book was released on 2016-01-01 with total page 314 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is an introduction to the language and standard proof methods of mathematics. It is a bridge from the computational courses (such as calculus or differential equations) that students typically encounter in their first year of college to a more abstract outlook. It lays a foundation for more theoretical courses such as topology, analysis and abstract algebra. Although it may be more meaningful to the student who has had some calculus, there is really no prerequisite other than a measure of mathematical maturity.

Mathematical Reasoning

Download Mathematical Reasoning PDF Online Free

Author :
Publisher : Prentice Hall
ISBN 13 : 9780131877184
Total Pages : 0 pages
Book Rating : 4.8/5 (771 download)

DOWNLOAD NOW!


Book Synopsis Mathematical Reasoning by : Theodore A. Sundstrom

Download or read book Mathematical Reasoning written by Theodore A. Sundstrom and published by Prentice Hall. This book was released on 2007 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Focusing on the formal development of mathematics, this book shows readers how to read, understand, write, and construct mathematical proofs.Uses elementary number theory and congruence arithmetic throughout. Focuses on writing in mathematics. Reviews prior mathematical work with “Preview Activities” at the start of each section. Includes “Activities” throughout that relate to the material contained in each section. Focuses on Congruence Notation and Elementary Number Theorythroughout.For professionals in the sciences or engineering who need to brush up on their advanced mathematics skills. Mathematical Reasoning: Writing and Proof, 2/E Theodore Sundstrom

100% Mathematical Proof

Download 100% Mathematical Proof PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 332 pages
Book Rating : 4.3/5 (97 download)

DOWNLOAD NOW!


Book Synopsis 100% Mathematical Proof by : Rowan Garnier

Download or read book 100% Mathematical Proof written by Rowan Garnier and published by . This book was released on 1996-08 with total page 332 pages. Available in PDF, EPUB and Kindle. Book excerpt: "Proof" has been and remains one of the concepts which characterises mathematics. Covering basic propositional and predicate logic as well as discussing axiom systems and formal proofs, the book seeks to explain what mathematicians understand by proofs and how they are communicated. The authors explore the principle techniques of direct and indirect proof including induction, existence and uniqueness proofs, proof by contradiction, constructive and non-constructive proofs, etc. Many examples from analysis and modern algebra are included. The exceptionally clear style and presentation ensures that the book will be useful and enjoyable to those studying and interested in the notion of mathematical "proof."

Proofs and Fundamentals

Download Proofs and Fundamentals PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1441971270
Total Pages : 378 pages
Book Rating : 4.4/5 (419 download)

DOWNLOAD NOW!


Book Synopsis Proofs and Fundamentals by : Ethan D. Bloch

Download or read book Proofs and Fundamentals written by Ethan D. Bloch and published by Springer Science & Business Media. This book was released on 2011-02-15 with total page 378 pages. Available in PDF, EPUB and Kindle. Book excerpt: “Proofs and Fundamentals: A First Course in Abstract Mathematics” 2nd edition is designed as a "transition" course to introduce undergraduates to the writing of rigorous mathematical proofs, and to such fundamental mathematical ideas as sets, functions, relations, and cardinality. The text serves as a bridge between computational courses such as calculus, and more theoretical, proofs-oriented courses such as linear algebra, abstract algebra and real analysis. This 3-part work carefully balances Proofs, Fundamentals, and Extras. Part 1 presents logic and basic proof techniques; Part 2 thoroughly covers fundamental material such as sets, functions and relations; and Part 3 introduces a variety of extra topics such as groups, combinatorics and sequences. A gentle, friendly style is used, in which motivation and informal discussion play a key role, and yet high standards in rigor and in writing are never compromised. New to the second edition: 1) A new section about the foundations of set theory has been added at the end of the chapter about sets. This section includes a very informal discussion of the Zermelo– Fraenkel Axioms for set theory. We do not make use of these axioms subsequently in the text, but it is valuable for any mathematician to be aware that an axiomatic basis for set theory exists. Also included in this new section is a slightly expanded discussion of the Axiom of Choice, and new discussion of Zorn's Lemma, which is used later in the text. 2) The chapter about the cardinality of sets has been rearranged and expanded. There is a new section at the start of the chapter that summarizes various properties of the set of natural numbers; these properties play important roles subsequently in the chapter. The sections on induction and recursion have been slightly expanded, and have been relocated to an earlier place in the chapter (following the new section), both because they are more concrete than the material found in the other sections of the chapter, and because ideas from the sections on induction and recursion are used in the other sections. Next comes the section on the cardinality of sets (which was originally the first section of the chapter); this section gained proofs of the Schroeder–Bernstein theorem and the Trichotomy Law for Sets, and lost most of the material about finite and countable sets, which has now been moved to a new section devoted to those two types of sets. The chapter concludes with the section on the cardinality of the number systems. 3) The chapter on the construction of the natural numbers, integers and rational numbers from the Peano Postulates was removed entirely. That material was originally included to provide the needed background about the number systems, particularly for the discussion of the cardinality of sets, but it was always somewhat out of place given the level and scope of this text. The background material about the natural numbers needed for the cardinality of sets has now been summarized in a new section at the start of that chapter, making the chapter both self-contained and more accessible than it previously was. 4) The section on families of sets has been thoroughly revised, with the focus being on families of sets in general, not necessarily thought of as indexed. 5) A new section about the convergence of sequences has been added to the chapter on selected topics. This new section, which treats a topic from real analysis, adds some diversity to the chapter, which had hitherto contained selected topics of only an algebraic or combinatorial nature. 6) A new section called ``You Are the Professor'' has been added to the end of the last chapter. This new section, which includes a number of attempted proofs taken from actual homework exercises submitted by students, offers the reader the opportunity to solidify her facility for writing proofs by critiquing these submissions as if she were the instructor for the course. 7) All known errors have been corrected. 8) Many minor adjustments of wording have been made throughout the text, with the hope of improving the exposition.

Applied Discrete Structures

Download Applied Discrete Structures PDF Online Free

Author :
Publisher : Lulu.com
ISBN 13 : 1105559297
Total Pages : 574 pages
Book Rating : 4.1/5 (55 download)

DOWNLOAD NOW!


Book Synopsis Applied Discrete Structures by : Ken Levasseur

Download or read book Applied Discrete Structures written by Ken Levasseur and published by Lulu.com. This book was released on 2012-02-25 with total page 574 pages. Available in PDF, EPUB and Kindle. Book excerpt: ''In writing this book, care was taken to use language and examples that gradually wean students from a simpleminded mechanical approach and move them toward mathematical maturity. We also recognize that many students who hesitate to ask for help from an instructor need a readable text, and we have tried to anticipate the questions that go unasked. The wide range of examples in the text are meant to augment the "favorite examples" that most instructors have for teaching the topcs in discrete mathematics. To provide diagnostic help and encouragement, we have included solutions and/or hints to the odd-numbered exercises. These solutions include detailed answers whenever warranted and complete proofs, not just terse outlines of proofs. Our use of standard terminology and notation makes Applied Discrete Structures a valuable reference book for future courses. Although many advanced books have a short review of elementary topics, they cannot be complete. The text is divided into lecture-length sections, facilitating the organization of an instructor's presentation.Topics are presented in such a way that students' understanding can be monitored through thought-provoking exercises. The exercises require an understanding of the topics and how they are interrelated, not just a familiarity with the key words. An Instructor's Guide is available to any instructor who uses the text. It includes: Chapter-by-chapter comments on subtopics that emphasize the pitfalls to avoid; Suggested coverage times; Detailed solutions to most even-numbered exercises; Sample quizzes, exams, and final exams. This textbook has been used in classes at Casper College (WY), Grinnell College (IA), Luzurne Community College (PA), University of the Puget Sound (WA).''--

Learning to Reason

Download Learning to Reason PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 1118165705
Total Pages : 457 pages
Book Rating : 4.1/5 (181 download)

DOWNLOAD NOW!


Book Synopsis Learning to Reason by : Nancy Rodgers

Download or read book Learning to Reason written by Nancy Rodgers and published by John Wiley & Sons. This book was released on 2011-09-15 with total page 457 pages. Available in PDF, EPUB and Kindle. Book excerpt: Learn how to develop your reasoning skills and how to writewell-reasoned proofs Learning to Reason shows you how to use the basic elements ofmathematical language to develop highly sophisticated, logicalreasoning skills. You'll get clear, concise, easy-to-followinstructions on the process of writing proofs, including thenecessary reasoning techniques and syntax for constructingwell-written arguments. Through in-depth coverage of logic, sets,and relations, Learning to Reason offers a meaningful, integratedview of modern mathematics, cuts through confusing terms and ideas,and provides a much-needed bridge to advanced work in mathematicsas well as computer science. Original, inspiring, and designed formaximum comprehension, this remarkable book: * Clearly explains how to write compound sentences in equivalentforms and use them in valid arguments * Presents simple techniques on how to structure your thinking andwriting to form well-reasoned proofs * Reinforces these techniques through a survey of sets--thebuilding blocks of mathematics * Examines the fundamental types of relations, which is "where theaction is" in mathematics * Provides relevant examples and class-tested exercises designed tomaximize the learning experience * Includes a mind-building game/exercise space atwww.wiley.com/products/subject/mathematics/

Proofs and Refutations

Download Proofs and Refutations PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 9780521290388
Total Pages : 190 pages
Book Rating : 4.2/5 (93 download)

DOWNLOAD NOW!


Book Synopsis Proofs and Refutations by : Imre Lakatos

Download or read book Proofs and Refutations written by Imre Lakatos and published by Cambridge University Press. This book was released on 1976 with total page 190 pages. Available in PDF, EPUB and Kindle. Book excerpt: Proofs and Refutations is for those interested in the methodology, philosophy and history of mathematics.

Mathematical Proofs

Download Mathematical Proofs PDF Online Free

Author :
Publisher : Pearson
ISBN 13 : 9780321797094
Total Pages : 0 pages
Book Rating : 4.7/5 (97 download)

DOWNLOAD NOW!


Book Synopsis Mathematical Proofs by : Gary Chartrand

Download or read book Mathematical Proofs written by Gary Chartrand and published by Pearson. This book was released on 2013 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book prepares students for the more abstract mathematics courses that follow calculus. The author introduces students to proof techniques, analyzing proofs, and writing proofs of their own. It also provides a solid introduction to such topics as relations, functions, and cardinalities of sets, as well as the theoretical aspects of fields such as number theory, abstract algebra, and group theory.

Explanation and Proof in Mathematics

Download Explanation and Proof in Mathematics PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1441905766
Total Pages : 289 pages
Book Rating : 4.4/5 (419 download)

DOWNLOAD NOW!


Book Synopsis Explanation and Proof in Mathematics by : Gila Hanna

Download or read book Explanation and Proof in Mathematics written by Gila Hanna and published by Springer Science & Business Media. This book was released on 2009-12-04 with total page 289 pages. Available in PDF, EPUB and Kindle. Book excerpt: In the four decades since Imre Lakatos declared mathematics a "quasi-empirical science," increasing attention has been paid to the process of proof and argumentation in the field -- a development paralleled by the rise of computer technology and the mounting interest in the logical underpinnings of mathematics. Explanantion and Proof in Mathematics assembles perspectives from mathematics education and from the philosophy and history of mathematics to strengthen mutual awareness and share recent findings and advances in their interrelated fields. With examples ranging from the geometrists of the 17th century and ancient Chinese algorithms to cognitive psychology and current educational practice, contributors explore the role of refutation in generating proofs, the varied links between experiment and deduction, the use of diagrammatic thinking in addition to pure logic, and the uses of proof in mathematics education (including a critique of "authoritative" versus "authoritarian" teaching styles). A sampling of the coverage: The conjoint origins of proof and theoretical physics in ancient Greece. Proof as bearers of mathematical knowledge. Bridging knowing and proving in mathematical reasoning. The role of mathematics in long-term cognitive development of reasoning. Proof as experiment in the work of Wittgenstein. Relationships between mathematical proof, problem-solving, and explanation. Explanation and Proof in Mathematics is certain to attract a wide range of readers, including mathematicians, mathematics education professionals, researchers, students, and philosophers and historians of mathematics.

Developing Essential Understanding of Proof and Proving for Teaching Mathematics in Grades 9-12

Download Developing Essential Understanding of Proof and Proving for Teaching Mathematics in Grades 9-12 PDF Online Free

Author :
Publisher : National
ISBN 13 :
Total Pages : 126 pages
Book Rating : 4.:/5 (31 download)

DOWNLOAD NOW!


Book Synopsis Developing Essential Understanding of Proof and Proving for Teaching Mathematics in Grades 9-12 by : Amy B. Ellis

Download or read book Developing Essential Understanding of Proof and Proving for Teaching Mathematics in Grades 9-12 written by Amy B. Ellis and published by National. This book was released on 2012 with total page 126 pages. Available in PDF, EPUB and Kindle. Book excerpt: Focuses on essential knowledge for teachers about proof and the process of proving. It is organised around five big ideas, supported by multiple smaller, interconnected ideas-essential understandings. Taking you beyond a simple introduction to proof and the activities involved in proving, the book will broaden and deepen your mathematical understanding of one of the most challenging topics for students...and teachers.

Nonplussed!

Download Nonplussed! PDF Online Free

Author :
Publisher : Princeton University Press
ISBN 13 : 1400837383
Total Pages : 213 pages
Book Rating : 4.4/5 (8 download)

DOWNLOAD NOW!


Book Synopsis Nonplussed! by : Julian Havil

Download or read book Nonplussed! written by Julian Havil and published by Princeton University Press. This book was released on 2010-08-02 with total page 213 pages. Available in PDF, EPUB and Kindle. Book excerpt: Math—the application of reasonable logic to reasonable assumptions—usually produces reasonable results. But sometimes math generates astonishing paradoxes—conclusions that seem completely unreasonable or just plain impossible but that are nevertheless demonstrably true. Did you know that a losing sports team can become a winning one by adding worse players than its opponents? Or that the thirteenth of the month is more likely to be a Friday than any other day? Or that cones can roll unaided uphill? In Nonplussed!—a delightfully eclectic collection of paradoxes from many different areas of math—popular-math writer Julian Havil reveals the math that shows the truth of these and many other unbelievable ideas. Nonplussed! pays special attention to problems from probability and statistics, areas where intuition can easily be wrong. These problems include the vagaries of tennis scoring, what can be deduced from tossing a needle, and disadvantageous games that form winning combinations. Other chapters address everything from the historically important Torricelli's Trumpet to the mind-warping implications of objects that live on high dimensions. Readers learn about the colorful history and people associated with many of these problems in addition to their mathematical proofs. Nonplussed! will appeal to anyone with a calculus background who enjoys popular math books or puzzles.

Introduction to Mathematical Thinking

Download Introduction to Mathematical Thinking PDF Online Free

Author :
Publisher :
ISBN 13 : 9780615653631
Total Pages : 0 pages
Book Rating : 4.6/5 (536 download)

DOWNLOAD NOW!


Book Synopsis Introduction to Mathematical Thinking by : Keith J. Devlin

Download or read book Introduction to Mathematical Thinking written by Keith J. Devlin and published by . This book was released on 2012 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: "Mathematical thinking is not the same as 'doing math'--unless you are a professional mathematician. For most people, 'doing math' means the application of procedures and symbolic manipulations. Mathematical thinking, in contrast, is what the name reflects, a way of thinking about things in the world that humans have developed over three thousand years. It does not have to be about mathematics at all, which means that many people can benefit from learning this powerful way of thinking, not just mathematicians and scientists."--Back cover.

Principia Mathematica

Download Principia Mathematica PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 688 pages
Book Rating : 4.3/5 (91 download)

DOWNLOAD NOW!


Book Synopsis Principia Mathematica by : Alfred North Whitehead

Download or read book Principia Mathematica written by Alfred North Whitehead and published by . This book was released on 1910 with total page 688 pages. Available in PDF, EPUB and Kindle. Book excerpt: