Statistical Pattern Recognition

Download Statistical Pattern Recognition PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 0470854782
Total Pages : 516 pages
Book Rating : 4.4/5 (78 download)

DOWNLOAD NOW!


Book Synopsis Statistical Pattern Recognition by : Andrew R. Webb

Download or read book Statistical Pattern Recognition written by Andrew R. Webb and published by John Wiley & Sons. This book was released on 2003-07-25 with total page 516 pages. Available in PDF, EPUB and Kindle. Book excerpt: Statistical pattern recognition is a very active area of study andresearch, which has seen many advances in recent years. New andemerging applications - such as data mining, web searching,multimedia data retrieval, face recognition, and cursivehandwriting recognition - require robust and efficient patternrecognition techniques. Statistical decision making and estimationare regarded as fundamental to the study of pattern recognition. Statistical Pattern Recognition, Second Edition has been fullyupdated with new methods, applications and references. It providesa comprehensive introduction to this vibrant area - with materialdrawn from engineering, statistics, computer science and the socialsciences - and covers many application areas, such as databasedesign, artificial neural networks, and decision supportsystems. * Provides a self-contained introduction to statistical patternrecognition. * Each technique described is illustrated by real examples. * Covers Bayesian methods, neural networks, support vectormachines, and unsupervised classification. * Each section concludes with a description of the applicationsthat have been addressed and with further developments of thetheory. * Includes background material on dissimilarity, parameterestimation, data, linear algebra and probability. * Features a variety of exercises, from 'open-book' questions tomore lengthy projects. The book is aimed primarily at senior undergraduate and graduatestudents studying statistical pattern recognition, patternprocessing, neural networks, and data mining, in both statisticsand engineering departments. It is also an excellent source ofreference for technical professionals working in advancedinformation development environments. For further information on the techniques and applicationsdiscussed in this book please visit ahref="http://www.statistical-pattern-recognition.net/"www.statistical-pattern-recognition.net/a

Pattern Recognition and Machine Learning

Download Pattern Recognition and Machine Learning PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 9781493938438
Total Pages : 0 pages
Book Rating : 4.9/5 (384 download)

DOWNLOAD NOW!


Book Synopsis Pattern Recognition and Machine Learning by : Christopher M. Bishop

Download or read book Pattern Recognition and Machine Learning written by Christopher M. Bishop and published by Springer. This book was released on 2016-08-23 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is the first textbook on pattern recognition to present the Bayesian viewpoint. The book presents approximate inference algorithms that permit fast approximate answers in situations where exact answers are not feasible. It uses graphical models to describe probability distributions when no other books apply graphical models to machine learning. No previous knowledge of pattern recognition or machine learning concepts is assumed. Familiarity with multivariate calculus and basic linear algebra is required, and some experience in the use of probabilities would be helpful though not essential as the book includes a self-contained introduction to basic probability theory.

An Elementary Introduction to Statistical Learning Theory

Download An Elementary Introduction to Statistical Learning Theory PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 1118023463
Total Pages : 267 pages
Book Rating : 4.1/5 (18 download)

DOWNLOAD NOW!


Book Synopsis An Elementary Introduction to Statistical Learning Theory by : Sanjeev Kulkarni

Download or read book An Elementary Introduction to Statistical Learning Theory written by Sanjeev Kulkarni and published by John Wiley & Sons. This book was released on 2011-06-09 with total page 267 pages. Available in PDF, EPUB and Kindle. Book excerpt: A thought-provoking look at statistical learning theory and its role in understanding human learning and inductive reasoning A joint endeavor from leading researchers in the fields of philosophy and electrical engineering, An Elementary Introduction to Statistical Learning Theory is a comprehensive and accessible primer on the rapidly evolving fields of statistical pattern recognition and statistical learning theory. Explaining these areas at a level and in a way that is not often found in other books on the topic, the authors present the basic theory behind contemporary machine learning and uniquely utilize its foundations as a framework for philosophical thinking about inductive inference. Promoting the fundamental goal of statistical learning, knowing what is achievable and what is not, this book demonstrates the value of a systematic methodology when used along with the needed techniques for evaluating the performance of a learning system. First, an introduction to machine learning is presented that includes brief discussions of applications such as image recognition, speech recognition, medical diagnostics, and statistical arbitrage. To enhance accessibility, two chapters on relevant aspects of probability theory are provided. Subsequent chapters feature coverage of topics such as the pattern recognition problem, optimal Bayes decision rule, the nearest neighbor rule, kernel rules, neural networks, support vector machines, and boosting. Appendices throughout the book explore the relationship between the discussed material and related topics from mathematics, philosophy, psychology, and statistics, drawing insightful connections between problems in these areas and statistical learning theory. All chapters conclude with a summary section, a set of practice questions, and a reference sections that supplies historical notes and additional resources for further study. An Elementary Introduction to Statistical Learning Theory is an excellent book for courses on statistical learning theory, pattern recognition, and machine learning at the upper-undergraduate and graduate levels. It also serves as an introductory reference for researchers and practitioners in the fields of engineering, computer science, philosophy, and cognitive science that would like to further their knowledge of the topic.

An Introduction to Statistical Learning

Download An Introduction to Statistical Learning PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3031387473
Total Pages : 617 pages
Book Rating : 4.0/5 (313 download)

DOWNLOAD NOW!


Book Synopsis An Introduction to Statistical Learning by : Gareth James

Download or read book An Introduction to Statistical Learning written by Gareth James and published by Springer Nature. This book was released on 2023-08-01 with total page 617 pages. Available in PDF, EPUB and Kindle. Book excerpt: An Introduction to Statistical Learning provides an accessible overview of the field of statistical learning, an essential toolset for making sense of the vast and complex data sets that have emerged in fields ranging from biology to finance, marketing, and astrophysics in the past twenty years. This book presents some of the most important modeling and prediction techniques, along with relevant applications. Topics include linear regression, classification, resampling methods, shrinkage approaches, tree-based methods, support vector machines, clustering, deep learning, survival analysis, multiple testing, and more. Color graphics and real-world examples are used to illustrate the methods presented. This book is targeted at statisticians and non-statisticians alike, who wish to use cutting-edge statistical learning techniques to analyze their data. Four of the authors co-wrote An Introduction to Statistical Learning, With Applications in R (ISLR), which has become a mainstay of undergraduate and graduate classrooms worldwide, as well as an important reference book for data scientists. One of the keys to its success was that each chapter contains a tutorial on implementing the analyses and methods presented in the R scientific computing environment. However, in recent years Python has become a popular language for data science, and there has been increasing demand for a Python-based alternative to ISLR. Hence, this book (ISLP) covers the same materials as ISLR but with labs implemented in Python. These labs will be useful both for Python novices, as well as experienced users.

Pattern Classification

Download Pattern Classification PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 111858600X
Total Pages : 680 pages
Book Rating : 4.1/5 (185 download)

DOWNLOAD NOW!


Book Synopsis Pattern Classification by : Richard O. Duda

Download or read book Pattern Classification written by Richard O. Duda and published by John Wiley & Sons. This book was released on 2012-11-09 with total page 680 pages. Available in PDF, EPUB and Kindle. Book excerpt: The first edition, published in 1973, has become a classicreference in the field. Now with the second edition, readers willfind information on key new topics such as neural networks andstatistical pattern recognition, the theory of machine learning,and the theory of invariances. Also included are worked examples,comparisons between different methods, extensive graphics, expandedexercises and computer project topics. An Instructor's Manual presenting detailed solutions to all theproblems in the book is available from the Wiley editorialdepartment.

Learning Statistics with R

Download Learning Statistics with R PDF Online Free

Author :
Publisher : Lulu.com
ISBN 13 : 1326189727
Total Pages : 617 pages
Book Rating : 4.3/5 (261 download)

DOWNLOAD NOW!


Book Synopsis Learning Statistics with R by : Daniel Navarro

Download or read book Learning Statistics with R written by Daniel Navarro and published by Lulu.com. This book was released on 2013-01-13 with total page 617 pages. Available in PDF, EPUB and Kindle. Book excerpt: "Learning Statistics with R" covers the contents of an introductory statistics class, as typically taught to undergraduate psychology students, focusing on the use of the R statistical software and adopting a light, conversational style throughout. The book discusses how to get started in R, and gives an introduction to data manipulation and writing scripts. From a statistical perspective, the book discusses descriptive statistics and graphing first, followed by chapters on probability theory, sampling and estimation, and null hypothesis testing. After introducing the theory, the book covers the analysis of contingency tables, t-tests, ANOVAs and regression. Bayesian statistics are covered at the end of the book. For more information (and the opportunity to check the book out before you buy!) visit http://ua.edu.au/ccs/teaching/lsr or http://learningstatisticswithr.com

Information Theory, Inference and Learning Algorithms

Download Information Theory, Inference and Learning Algorithms PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 9780521642989
Total Pages : 694 pages
Book Rating : 4.6/5 (429 download)

DOWNLOAD NOW!


Book Synopsis Information Theory, Inference and Learning Algorithms by : David J. C. MacKay

Download or read book Information Theory, Inference and Learning Algorithms written by David J. C. MacKay and published by Cambridge University Press. This book was released on 2003-09-25 with total page 694 pages. Available in PDF, EPUB and Kindle. Book excerpt: Information theory and inference, taught together in this exciting textbook, lie at the heart of many important areas of modern technology - communication, signal processing, data mining, machine learning, pattern recognition, computational neuroscience, bioinformatics and cryptography. The book introduces theory in tandem with applications. Information theory is taught alongside practical communication systems such as arithmetic coding for data compression and sparse-graph codes for error-correction. Inference techniques, including message-passing algorithms, Monte Carlo methods and variational approximations, are developed alongside applications to clustering, convolutional codes, independent component analysis, and neural networks. Uniquely, the book covers state-of-the-art error-correcting codes, including low-density-parity-check codes, turbo codes, and digital fountain codes - the twenty-first-century standards for satellite communications, disk drives, and data broadcast. Richly illustrated, filled with worked examples and over 400 exercises, some with detailed solutions, the book is ideal for self-learning, and for undergraduate or graduate courses. It also provides an unparalleled entry point for professionals in areas as diverse as computational biology, financial engineering and machine learning.

Model-Based Machine Learning

Download Model-Based Machine Learning PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1498756824
Total Pages : 469 pages
Book Rating : 4.4/5 (987 download)

DOWNLOAD NOW!


Book Synopsis Model-Based Machine Learning by : John Winn

Download or read book Model-Based Machine Learning written by John Winn and published by CRC Press. This book was released on 2023-11-30 with total page 469 pages. Available in PDF, EPUB and Kindle. Book excerpt: Today, machine learning is being applied to a growing variety of problems in a bewildering variety of domains. A fundamental challenge when using machine learning is connecting the abstract mathematics of a machine learning technique to a concrete, real world problem. This book tackles this challenge through model-based machine learning which focuses on understanding the assumptions encoded in a machine learning system and their corresponding impact on the behaviour of the system. The key ideas of model-based machine learning are introduced through a series of case studies involving real-world applications. Case studies play a central role because it is only in the context of applications that it makes sense to discuss modelling assumptions. Each chapter introduces one case study and works through step-by-step to solve it using a model-based approach. The aim is not just to explain machine learning methods, but also showcase how to create, debug, and evolve them to solve a problem. Features: Explores the assumptions being made by machine learning systems and the effect these assumptions have when the system is applied to concrete problems. Explains machine learning concepts as they arise in real-world case studies. Shows how to diagnose, understand and address problems with machine learning systems. Full source code available, allowing models and results to be reproduced and explored. Includes optional deep-dive sections with more mathematical details on inference algorithms for the interested reader.

Solving Data Mining Problems Through Pattern Recognition

Download Solving Data Mining Problems Through Pattern Recognition PDF Online Free

Author :
Publisher : Prentice Hall
ISBN 13 :
Total Pages : 424 pages
Book Rating : 4.3/5 (91 download)

DOWNLOAD NOW!


Book Synopsis Solving Data Mining Problems Through Pattern Recognition by : Ruby L. Kennedy

Download or read book Solving Data Mining Problems Through Pattern Recognition written by Ruby L. Kennedy and published by Prentice Hall. This book was released on 1997 with total page 424 pages. Available in PDF, EPUB and Kindle. Book excerpt: Data mining is an exploding technology increasingly used in major industries like finance, aerospace, and the medical industry. To truly take advantage of data mining capabilities, one must use and understand pattern recognition techniques. They are addressed in this book along with a tutorial on how to use the accompanying pattern software ("Pattern Recognition Workbench") on the CD-ROM.

Syntactic and Structural Pattern Recognition

Download Syntactic and Structural Pattern Recognition PDF Online Free

Author :
Publisher : World Scientific
ISBN 13 : 9789971505660
Total Pages : 568 pages
Book Rating : 4.5/5 (56 download)

DOWNLOAD NOW!


Book Synopsis Syntactic and Structural Pattern Recognition by : Horst Bunke

Download or read book Syntactic and Structural Pattern Recognition written by Horst Bunke and published by World Scientific. This book was released on 1990 with total page 568 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is currently the only one on this subject containing both introductory material and advanced recent research results. It presents, at one end, fundamental concepts and notations developed in syntactic and structural pattern recognition and at the other, reports on the current state of the art with respect to both methodology and applications. In particular, it includes artificial intelligence related techniques, which are likely to become very important in future pattern recognition.The book consists of individual chapters written by different authors. The chapters are grouped into broader subject areas like “Syntactic Representation and Parsing”, “Structural Representation and Matching”, “Learning”, etc. Each chapter is a self-contained presentation of one particular topic. In order to keep the original flavor of each contribution, no efforts were undertaken to unify the different chapters with respect to notation. Naturally, the self-containedness of the individual chapters results in some redundancy. However, we believe that this handicap is compensated by the fact that each contribution can be read individually without prior study of the preceding chapters. A unification of the spectrum of material covered by the individual chapters is provided by the subject and author index included at the end of the book.

S Programming

Download S Programming PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 9780387989662
Total Pages : 284 pages
Book Rating : 4.9/5 (896 download)

DOWNLOAD NOW!


Book Synopsis S Programming by : William Venables

Download or read book S Programming written by William Venables and published by Springer Science & Business Media. This book was released on 2000-04-20 with total page 284 pages. Available in PDF, EPUB and Kindle. Book excerpt: Written by the bestselling authors of "Modern Applied Statistics with S-Plus", this book provides an in-depth guide to writing software in the S language under the commercial S-PLUS and the Open Source R systems. The book is geared to those with some knowledge of the S language who want to use it more effectively.

Kernel Methods for Pattern Analysis

Download Kernel Methods for Pattern Analysis PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 9780521813976
Total Pages : 520 pages
Book Rating : 4.8/5 (139 download)

DOWNLOAD NOW!


Book Synopsis Kernel Methods for Pattern Analysis by : John Shawe-Taylor

Download or read book Kernel Methods for Pattern Analysis written by John Shawe-Taylor and published by Cambridge University Press. This book was released on 2004-06-28 with total page 520 pages. Available in PDF, EPUB and Kindle. Book excerpt: Publisher Description

Structural, Syntactic, and Statistical Pattern Recognition

Download Structural, Syntactic, and Statistical Pattern Recognition PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 3540225706
Total Pages : 1187 pages
Book Rating : 4.5/5 (42 download)

DOWNLOAD NOW!


Book Synopsis Structural, Syntactic, and Statistical Pattern Recognition by : Ana Fred

Download or read book Structural, Syntactic, and Statistical Pattern Recognition written by Ana Fred and published by Springer Science & Business Media. This book was released on 2004-07-28 with total page 1187 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book constitutes the refereed proceedings of the 10th International Workshop on Structural and Syntactic Pattern Recognition, SSPR 2004 and the 5th International Workshop on Statistical Techniques in Pattern Recognition, SPR 2004, held jointly in Lisbon, Portugal, in August 2004. The 59 revised full papers and 64 revised poster papers presented together with 4 invited papers were carefully reviewed and selected from 219 submissions. The papers are organized in topical sections on graphs; visual recognition and detection; contours, lines, and paths; matching and superposition; transduction and translation; image and video analysis; syntactics, languages, and strings; human shape and action; sequences and graphs; pattern matching and classification; document image analysis; shape analysis; multiple classifier systems; density estimation; clustering; feature selection; classification; and representation.

Pattern Recognition and Image Analysis

Download Pattern Recognition and Image Analysis PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 3540728481
Total Pages : 674 pages
Book Rating : 4.5/5 (47 download)

DOWNLOAD NOW!


Book Synopsis Pattern Recognition and Image Analysis by : Joan Martí

Download or read book Pattern Recognition and Image Analysis written by Joan Martí and published by Springer Science & Business Media. This book was released on 2007-05-31 with total page 674 pages. Available in PDF, EPUB and Kindle. Book excerpt: Part of a two-volume set, this book constitutes the refereed proceedings of the Third Iberian Conference on Pattern Recognition and Image Analysis, IbPRIA 2007, held in Girona, Spain in June 2007. It covers pattern recognition, human language technology, special architectures and industrial applications, motion analysis, image analysis, biomedical applications, shape and texture analysis, 3D, and image coding and processing.

Handbook of Statistical Analysis and Data Mining Applications

Download Handbook of Statistical Analysis and Data Mining Applications PDF Online Free

Author :
Publisher : Elsevier
ISBN 13 : 0124166458
Total Pages : 824 pages
Book Rating : 4.1/5 (241 download)

DOWNLOAD NOW!


Book Synopsis Handbook of Statistical Analysis and Data Mining Applications by : Ken Yale

Download or read book Handbook of Statistical Analysis and Data Mining Applications written by Ken Yale and published by Elsevier. This book was released on 2017-11-09 with total page 824 pages. Available in PDF, EPUB and Kindle. Book excerpt: Handbook of Statistical Analysis and Data Mining Applications, Second Edition, is a comprehensive professional reference book that guides business analysts, scientists, engineers and researchers, both academic and industrial, through all stages of data analysis, model building and implementation. The handbook helps users discern technical and business problems, understand the strengths and weaknesses of modern data mining algorithms and employ the right statistical methods for practical application. This book is an ideal reference for users who want to address massive and complex datasets with novel statistical approaches and be able to objectively evaluate analyses and solutions. It has clear, intuitive explanations of the principles and tools for solving problems using modern analytic techniques and discusses their application to real problems in ways accessible and beneficial to practitioners across several areas—from science and engineering, to medicine, academia and commerce. - Includes input by practitioners for practitioners - Includes tutorials in numerous fields of study that provide step-by-step instruction on how to use supplied tools to build models - Contains practical advice from successful real-world implementations - Brings together, in a single resource, all the information a beginner needs to understand the tools and issues in data mining to build successful data mining solutions - Features clear, intuitive explanations of novel analytical tools and techniques, and their practical applications

Introduction to Pattern Recognition

Download Introduction to Pattern Recognition PDF Online Free

Author :
Publisher : Academic Press
ISBN 13 : 0080922759
Total Pages : 233 pages
Book Rating : 4.0/5 (89 download)

DOWNLOAD NOW!


Book Synopsis Introduction to Pattern Recognition by : Sergios Theodoridis

Download or read book Introduction to Pattern Recognition written by Sergios Theodoridis and published by Academic Press. This book was released on 2010-03-03 with total page 233 pages. Available in PDF, EPUB and Kindle. Book excerpt: Introduction to Pattern Recognition: A Matlab Approach is an accompanying manual to Theodoridis/Koutroumbas' Pattern Recognition. It includes Matlab code of the most common methods and algorithms in the book, together with a descriptive summary and solved examples, and including real-life data sets in imaging and audio recognition. This text is designed for electronic engineering, computer science, computer engineering, biomedical engineering and applied mathematics students taking graduate courses on pattern recognition and machine learning as well as R&D engineers and university researchers in image and signal processing/analyisis, and computer vision. - Matlab code and descriptive summary of the most common methods and algorithms in Theodoridis/Koutroumbas, Pattern Recognition, Fourth Edition - Solved examples in Matlab, including real-life data sets in imaging and audio recognition - Available separately or at a special package price with the main text (ISBN for package: 978-0-12-374491-3)

Independent Component Analysis

Download Independent Component Analysis PDF Online Free

Author :
Publisher : MIT Press
ISBN 13 : 9780262693158
Total Pages : 224 pages
Book Rating : 4.6/5 (931 download)

DOWNLOAD NOW!


Book Synopsis Independent Component Analysis by : James V. Stone

Download or read book Independent Component Analysis written by James V. Stone and published by MIT Press. This book was released on 2004 with total page 224 pages. Available in PDF, EPUB and Kindle. Book excerpt: A tutorial-style introduction to a class of methods for extracting independent signals from a mixture of signals originating from different physical sources; includes MatLab computer code examples. Independent component analysis (ICA) is becoming an increasingly important tool for analyzing large data sets. In essence, ICA separates an observed set of signal mixtures into a set of statistically independent component signals, or source signals. In so doing, this powerful method can extract the relatively small amount of useful information typically found in large data sets. The applications for ICA range from speech processing, brain imaging, and electrical brain signals to telecommunications and stock predictions. In Independent Component Analysis, Jim Stone presents the essentials of ICA and related techniques (projection pursuit and complexity pursuit) in a tutorial style, using intuitive examples described in simple geometric terms. The treatment fills the need for a basic primer on ICA that can be used by readers of varying levels of mathematical sophistication, including engineers, cognitive scientists, and neuroscientists who need to know the essentials of this evolving method. An overview establishes the strategy implicit in ICA in terms of its essentially physical underpinnings and describes how ICA is based on the key observations that different physical processes generate outputs that are statistically independent of each other. The book then describes what Stone calls "the mathematical nuts and bolts" of how ICA works. Presenting only essential mathematical proofs, Stone guides the reader through an exploration of the fundamental characteristics of ICA. Topics covered include the geometry of mixing and unmixing; methods for blind source separation; and applications of ICA, including voice mixtures, EEG, fMRI, and fetal heart monitoring. The appendixes provide a vector matrix tutorial, plus basic demonstration computer code that allows the reader to see how each mathematical method described in the text translates into working Matlab computer code.