Machine Learning Techniques for Improved Business Analytics

Download Machine Learning Techniques for Improved Business Analytics PDF Online Free

Author :
Publisher : IGI Global
ISBN 13 : 1522535357
Total Pages : 300 pages
Book Rating : 4.5/5 (225 download)

DOWNLOAD NOW!


Book Synopsis Machine Learning Techniques for Improved Business Analytics by : G., Dileep Kumar

Download or read book Machine Learning Techniques for Improved Business Analytics written by G., Dileep Kumar and published by IGI Global. This book was released on 2018-07-06 with total page 300 pages. Available in PDF, EPUB and Kindle. Book excerpt: Analytical tools and algorithms are essential in business data and information systems. Efficient economic and financial forecasting in machine learning techniques increases gains while reducing risks. Providing research on predictive models with high accuracy, stability, and ease of interpretation is important in improving data preparation, analysis, and implementation processes in business organizations. Machine Learning Techniques for Improved Business Analytics is a collection of innovative research on the methods and applications of artificial intelligence in strategic business decisions and management. Featuring coverage on a broad range of topics such as data mining, portfolio optimization, and social network analysis, this book is ideally designed for business managers and practitioners, upper-level business students, and researchers seeking current research on large-scale information control and evaluation technologies that exceed the functionality of conventional data processing techniques.

Springer Handbook of Engineering Statistics

Download Springer Handbook of Engineering Statistics PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1852338067
Total Pages : 1135 pages
Book Rating : 4.8/5 (523 download)

DOWNLOAD NOW!


Book Synopsis Springer Handbook of Engineering Statistics by : Hoang Pham

Download or read book Springer Handbook of Engineering Statistics written by Hoang Pham and published by Springer Science & Business Media. This book was released on 2006 with total page 1135 pages. Available in PDF, EPUB and Kindle. Book excerpt: In today’s global and highly competitive environment, continuous improvement in the processes and products of any field of engineering is essential for survival. This book gathers together the full range of statistical techniques required by engineers from all fields. It will assist them to gain sensible statistical feedback on how their processes or products are functioning and to give them realistic predictions of how these could be improved. The handbook will be essential reading for all engineers and engineering-connected managers who are serious about keeping their methods and products at the cutting edge of quality and competitiveness.

Interpretable Machine Learning

Download Interpretable Machine Learning PDF Online Free

Author :
Publisher : Lulu.com
ISBN 13 : 0244768528
Total Pages : 320 pages
Book Rating : 4.2/5 (447 download)

DOWNLOAD NOW!


Book Synopsis Interpretable Machine Learning by : Christoph Molnar

Download or read book Interpretable Machine Learning written by Christoph Molnar and published by Lulu.com. This book was released on 2020 with total page 320 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is about making machine learning models and their decisions interpretable. After exploring the concepts of interpretability, you will learn about simple, interpretable models such as decision trees, decision rules and linear regression. Later chapters focus on general model-agnostic methods for interpreting black box models like feature importance and accumulated local effects and explaining individual predictions with Shapley values and LIME. All interpretation methods are explained in depth and discussed critically. How do they work under the hood? What are their strengths and weaknesses? How can their outputs be interpreted? This book will enable you to select and correctly apply the interpretation method that is most suitable for your machine learning project.

Flexible Imputation of Missing Data, Second Edition

Download Flexible Imputation of Missing Data, Second Edition PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 0429960352
Total Pages : 444 pages
Book Rating : 4.4/5 (299 download)

DOWNLOAD NOW!


Book Synopsis Flexible Imputation of Missing Data, Second Edition by : Stef van Buuren

Download or read book Flexible Imputation of Missing Data, Second Edition written by Stef van Buuren and published by CRC Press. This book was released on 2018-07-17 with total page 444 pages. Available in PDF, EPUB and Kindle. Book excerpt: Missing data pose challenges to real-life data analysis. Simple ad-hoc fixes, like deletion or mean imputation, only work under highly restrictive conditions, which are often not met in practice. Multiple imputation replaces each missing value by multiple plausible values. The variability between these replacements reflects our ignorance of the true (but missing) value. Each of the completed data set is then analyzed by standard methods, and the results are pooled to obtain unbiased estimates with correct confidence intervals. Multiple imputation is a general approach that also inspires novel solutions to old problems by reformulating the task at hand as a missing-data problem. This is the second edition of a popular book on multiple imputation, focused on explaining the application of methods through detailed worked examples using the MICE package as developed by the author. This new edition incorporates the recent developments in this fast-moving field. This class-tested book avoids mathematical and technical details as much as possible: formulas are accompanied by verbal statements that explain the formula in accessible terms. The book sharpens the reader’s intuition on how to think about missing data, and provides all the tools needed to execute a well-grounded quantitative analysis in the presence of missing data.

Tree-Based Machine Learning Methods in SAS Viya

Download Tree-Based Machine Learning Methods in SAS Viya PDF Online Free

Author :
Publisher :
ISBN 13 : 9781954846715
Total Pages : 364 pages
Book Rating : 4.8/5 (467 download)

DOWNLOAD NOW!


Book Synopsis Tree-Based Machine Learning Methods in SAS Viya by : Sharad Saxena

Download or read book Tree-Based Machine Learning Methods in SAS Viya written by Sharad Saxena and published by . This book was released on 2022-02-21 with total page 364 pages. Available in PDF, EPUB and Kindle. Book excerpt: Discover how to build decision trees using SASViya! Tree-Based Machine Learning Methods in SASViya covers everything from using a single tree to more advanced bagging and boosting ensemble methods. The book includes discussions of tree-structured predictive models and the methodology for growing, pruning, and assessing decision trees, forests, and gradient boosted trees. Each chapter introduces a new data concern and then walks you through tweaking the modeling approach, modifying the properties, and changing the hyperparameters, thus building an effective tree-based machine learning model. Along the way, you will gain experience making decision trees, forests, and gradient boosted trees that work for you. By the end of this book, you will know how to: build tree-structured models, including classification trees and regression trees. build tree-based ensemble models, including forest and gradient boosting. run isolation forest and Poisson and Tweedy gradient boosted regression tree models. implement open source in SAS and SAS in open source. use decision trees for exploratory data analysis, dimension reduction, and missing value imputation.

Classification and Regression Trees

Download Classification and Regression Trees PDF Online Free

Author :
Publisher : Routledge
ISBN 13 : 135146048X
Total Pages : 370 pages
Book Rating : 4.3/5 (514 download)

DOWNLOAD NOW!


Book Synopsis Classification and Regression Trees by : Leo Breiman

Download or read book Classification and Regression Trees written by Leo Breiman and published by Routledge. This book was released on 2017-10-19 with total page 370 pages. Available in PDF, EPUB and Kindle. Book excerpt: The methodology used to construct tree structured rules is the focus of this monograph. Unlike many other statistical procedures, which moved from pencil and paper to calculators, this text's use of trees was unthinkable before computers. Both the practical and theoretical sides have been developed in the authors' study of tree methods. Classification and Regression Trees reflects these two sides, covering the use of trees as a data analysis method, and in a more mathematical framework, proving some of their fundamental properties.

Decision Tree and Ensemble Learning Based on Ant Colony Optimization

Download Decision Tree and Ensemble Learning Based on Ant Colony Optimization PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3319937529
Total Pages : 165 pages
Book Rating : 4.3/5 (199 download)

DOWNLOAD NOW!


Book Synopsis Decision Tree and Ensemble Learning Based on Ant Colony Optimization by : Jan Kozak

Download or read book Decision Tree and Ensemble Learning Based on Ant Colony Optimization written by Jan Kozak and published by Springer. This book was released on 2018-06-20 with total page 165 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book not only discusses the important topics in the area of machine learning and combinatorial optimization, it also combines them into one. This was decisive for choosing the material to be included in the book and determining its order of presentation. Decision trees are a popular method of classification as well as of knowledge representation. At the same time, they are easy to implement as the building blocks of an ensemble of classifiers. Admittedly, however, the task of constructing a near-optimal decision tree is a very complex process. The good results typically achieved by the ant colony optimization algorithms when dealing with combinatorial optimization problems suggest the possibility of also using that approach for effectively constructing decision trees. The underlying rationale is that both problem classes can be presented as graphs. This fact leads to option of considering a larger spectrum of solutions than those based on the heuristic. Moreover, ant colony optimization algorithms can be used to advantage when building ensembles of classifiers. This book is a combination of a research monograph and a textbook. It can be used in graduate courses, but is also of interest to researchers, both specialists in machine learning and those applying machine learning methods to cope with problems from any field of R&D.

Demand Prediction in Retail

Download Demand Prediction in Retail PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3030858553
Total Pages : 166 pages
Book Rating : 4.0/5 (38 download)

DOWNLOAD NOW!


Book Synopsis Demand Prediction in Retail by : Maxime C. Cohen

Download or read book Demand Prediction in Retail written by Maxime C. Cohen and published by Springer Nature. This book was released on 2022-01-01 with total page 166 pages. Available in PDF, EPUB and Kindle. Book excerpt: From data collection to evaluation and visualization of prediction results, this book provides a comprehensive overview of the process of predicting demand for retailers. Each step is illustrated with the relevant code and implementation details to demystify how historical data can be leveraged to predict future demand. The tools and methods presented can be applied to most retail settings, both online and brick-and-mortar, such as fashion, electronics, groceries, and furniture. This book is intended to help students in business analytics and data scientists better master how to leverage data for predicting demand in retail applications. It can also be used as a guide for supply chain practitioners who are interested in predicting demand. It enables readers to understand how to leverage data to predict future demand, how to clean and pre-process the data to make it suitable for predictive analytics, what the common caveats are in terms of implementation and how to assess prediction accuracy.

Tree-Based Methods for Statistical Learning in R

Download Tree-Based Methods for Statistical Learning in R PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1000595315
Total Pages : 405 pages
Book Rating : 4.0/5 (5 download)

DOWNLOAD NOW!


Book Synopsis Tree-Based Methods for Statistical Learning in R by : Brandon M. Greenwell

Download or read book Tree-Based Methods for Statistical Learning in R written by Brandon M. Greenwell and published by CRC Press. This book was released on 2022-06-23 with total page 405 pages. Available in PDF, EPUB and Kindle. Book excerpt: Tree-based Methods for Statistical Learning in R provides a thorough introduction to both individual decision tree algorithms (Part I) and ensembles thereof (Part II). Part I of the book brings several different tree algorithms into focus, both conventional and contemporary. Building a strong foundation for how individual decision trees work will help readers better understand tree-based ensembles at a deeper level, which lie at the cutting edge of modern statistical and machine learning methodology. The book follows up most ideas and mathematical concepts with code-based examples in the R statistical language; with an emphasis on using as few external packages as possible. For example, users will be exposed to writing their own random forest and gradient tree boosting functions using simple for loops and basic tree fitting software (like rpart and party/partykit), and more. The core chapters also end with a detailed section on relevant software in both R and other opensource alternatives (e.g., Python, Spark, and Julia), and example usage on real data sets. While the book mostly uses R, it is meant to be equally accessible and useful to non-R programmers. Consumers of this book will have gained a solid foundation (and appreciation) for tree-based methods and how they can be used to solve practical problems and challenges data scientists often face in applied work. Features: Thorough coverage, from the ground up, of tree-based methods (e.g., CART, conditional inference trees, bagging, boosting, and random forests). A companion website containing additional supplementary material and the code to reproduce every example and figure in the book. A companion R package, called treemisc, which contains several data sets and functions used throughout the book (e.g., there’s an implementation of gradient tree boosting with LAD loss that shows how to perform the line search step by updating the terminal node estimates of a fitted rpart tree). Interesting examples that are of practical use; for example, how to construct partial dependence plots from a fitted model in Spark MLlib (using only Spark operations), or post-processing tree ensembles via the LASSO to reduce the number of trees while maintaining, or even improving performance.

Ethnographic Decision Tree Modeling

Download Ethnographic Decision Tree Modeling PDF Online Free

Author :
Publisher : SAGE
ISBN 13 : 9780803934870
Total Pages : 112 pages
Book Rating : 4.9/5 (348 download)

DOWNLOAD NOW!


Book Synopsis Ethnographic Decision Tree Modeling by : Christina H. Gladwin

Download or read book Ethnographic Decision Tree Modeling written by Christina H. Gladwin and published by SAGE. This book was released on 1989-09 with total page 112 pages. Available in PDF, EPUB and Kindle. Book excerpt: Why do people in a certain group behave the way they do? And, more importantly, what specific criteria was used by the group in question? This book presents a method for answering these questions.

Tree Models of Similarity and Association

Download Tree Models of Similarity and Association PDF Online Free

Author :
Publisher : SAGE
ISBN 13 : 9780803957077
Total Pages : 76 pages
Book Rating : 4.9/5 (57 download)

DOWNLOAD NOW!


Book Synopsis Tree Models of Similarity and Association by : James E. Corter

Download or read book Tree Models of Similarity and Association written by James E. Corter and published by SAGE. This book was released on 1996-04-02 with total page 76 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book describes how matrices of similarities or associations among entities can be modelled using trees in order to explain some of the issues that arise in performing similarity relations analyses and interpreting the results correctly.

Hands-On Machine Learning with R

Download Hands-On Machine Learning with R PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1000730433
Total Pages : 373 pages
Book Rating : 4.0/5 (7 download)

DOWNLOAD NOW!


Book Synopsis Hands-On Machine Learning with R by : Brad Boehmke

Download or read book Hands-On Machine Learning with R written by Brad Boehmke and published by CRC Press. This book was released on 2019-11-07 with total page 373 pages. Available in PDF, EPUB and Kindle. Book excerpt: Hands-on Machine Learning with R provides a practical and applied approach to learning and developing intuition into today’s most popular machine learning methods. This book serves as a practitioner’s guide to the machine learning process and is meant to help the reader learn to apply the machine learning stack within R, which includes using various R packages such as glmnet, h2o, ranger, xgboost, keras, and others to effectively model and gain insight from their data. The book favors a hands-on approach, providing an intuitive understanding of machine learning concepts through concrete examples and just a little bit of theory. Throughout this book, the reader will be exposed to the entire machine learning process including feature engineering, resampling, hyperparameter tuning, model evaluation, and interpretation. The reader will be exposed to powerful algorithms such as regularized regression, random forests, gradient boosting machines, deep learning, generalized low rank models, and more! By favoring a hands-on approach and using real word data, the reader will gain an intuitive understanding of the architectures and engines that drive these algorithms and packages, understand when and how to tune the various hyperparameters, and be able to interpret model results. By the end of this book, the reader should have a firm grasp of R’s machine learning stack and be able to implement a systematic approach for producing high quality modeling results. Features: · Offers a practical and applied introduction to the most popular machine learning methods. · Topics covered include feature engineering, resampling, deep learning and more. · Uses a hands-on approach and real world data.

An Introduction to Statistical Learning

Download An Introduction to Statistical Learning PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3031387473
Total Pages : 617 pages
Book Rating : 4.0/5 (313 download)

DOWNLOAD NOW!


Book Synopsis An Introduction to Statistical Learning by : Gareth James

Download or read book An Introduction to Statistical Learning written by Gareth James and published by Springer Nature. This book was released on 2023-08-01 with total page 617 pages. Available in PDF, EPUB and Kindle. Book excerpt: An Introduction to Statistical Learning provides an accessible overview of the field of statistical learning, an essential toolset for making sense of the vast and complex data sets that have emerged in fields ranging from biology to finance, marketing, and astrophysics in the past twenty years. This book presents some of the most important modeling and prediction techniques, along with relevant applications. Topics include linear regression, classification, resampling methods, shrinkage approaches, tree-based methods, support vector machines, clustering, deep learning, survival analysis, multiple testing, and more. Color graphics and real-world examples are used to illustrate the methods presented. This book is targeted at statisticians and non-statisticians alike, who wish to use cutting-edge statistical learning techniques to analyze their data. Four of the authors co-wrote An Introduction to Statistical Learning, With Applications in R (ISLR), which has become a mainstay of undergraduate and graduate classrooms worldwide, as well as an important reference book for data scientists. One of the keys to its success was that each chapter contains a tutorial on implementing the analyses and methods presented in the R scientific computing environment. However, in recent years Python has become a popular language for data science, and there has been increasing demand for a Python-based alternative to ISLR. Hence, this book (ISLP) covers the same materials as ISLR but with labs implemented in Python. These labs will be useful both for Python novices, as well as experienced users.

Advances in Artificial Intelligence

Download Advances in Artificial Intelligence PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3642018181
Total Pages : 308 pages
Book Rating : 4.6/5 (42 download)

DOWNLOAD NOW!


Book Synopsis Advances in Artificial Intelligence by : Yong Gao

Download or read book Advances in Artificial Intelligence written by Yong Gao and published by Springer. This book was released on 2009-05-15 with total page 308 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book constitutes the refereed proceedings of the 22st Conference of the Canadian Society for Computational Studies of Intelligence, Canadian AI 2009, held in Windsor, Canada, in May 2008. The 30 revised full papers presented together with 5 revised short papers and 8 papers from the graduate student symposium were carefully reviewed and selected from 75 submissions. The papers present original high-quality research in all areas of Artificial Intelligence and apply historical AI techniques to modern problem domains as well as recent techniques to historical problem settings.

Data Mining and Knowledge Discovery Handbook

Download Data Mining and Knowledge Discovery Handbook PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 038725465X
Total Pages : 1378 pages
Book Rating : 4.3/5 (872 download)

DOWNLOAD NOW!


Book Synopsis Data Mining and Knowledge Discovery Handbook by : Oded Maimon

Download or read book Data Mining and Knowledge Discovery Handbook written by Oded Maimon and published by Springer Science & Business Media. This book was released on 2006-05-28 with total page 1378 pages. Available in PDF, EPUB and Kindle. Book excerpt: Data Mining and Knowledge Discovery Handbook organizes all major concepts, theories, methodologies, trends, challenges and applications of data mining (DM) and knowledge discovery in databases (KDD) into a coherent and unified repository. This book first surveys, then provides comprehensive yet concise algorithmic descriptions of methods, including classic methods plus the extensions and novel methods developed recently. This volume concludes with in-depth descriptions of data mining applications in various interdisciplinary industries including finance, marketing, medicine, biology, engineering, telecommunications, software, and security. Data Mining and Knowledge Discovery Handbook is designed for research scientists and graduate-level students in computer science and engineering. This book is also suitable for professionals in fields such as computing applications, information systems management, and strategic research management.

C4.5

Download C4.5 PDF Online Free

Author :
Publisher : Morgan Kaufmann
ISBN 13 : 9781558602380
Total Pages : 286 pages
Book Rating : 4.6/5 (23 download)

DOWNLOAD NOW!


Book Synopsis C4.5 by : J. Ross Quinlan

Download or read book C4.5 written by J. Ross Quinlan and published by Morgan Kaufmann. This book was released on 1993 with total page 286 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is a complete guide to the C4.5 system as implemented in C for the UNIX environment. It contains a comprehensive guide to the system's use, the source code (about 8,800 lines), and implementation notes.

Feature Engineering and Selection

Download Feature Engineering and Selection PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1351609467
Total Pages : 266 pages
Book Rating : 4.3/5 (516 download)

DOWNLOAD NOW!


Book Synopsis Feature Engineering and Selection by : Max Kuhn

Download or read book Feature Engineering and Selection written by Max Kuhn and published by CRC Press. This book was released on 2019-07-25 with total page 266 pages. Available in PDF, EPUB and Kindle. Book excerpt: The process of developing predictive models includes many stages. Most resources focus on the modeling algorithms but neglect other critical aspects of the modeling process. This book describes techniques for finding the best representations of predictors for modeling and for nding the best subset of predictors for improving model performance. A variety of example data sets are used to illustrate the techniques along with R programs for reproducing the results.