Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Topological Methods For Nonlinear Eigenvalue Problems
Download Topological Methods For Nonlinear Eigenvalue Problems full books in PDF, epub, and Kindle. Read online Topological Methods For Nonlinear Eigenvalue Problems ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis Topological Methods in Nonlinear Functional Analysis by : Sankatha Prasad Singh
Download or read book Topological Methods in Nonlinear Functional Analysis written by Sankatha Prasad Singh and published by American Mathematical Soc.. This book was released on 1983 with total page 226 pages. Available in PDF, EPUB and Kindle. Book excerpt: Covers the proceedings of the session on Fixed Point Theory and Applications held at the University of Toronto, August 21-26, 1982. This work presents theorems on the existence of fixed points of nonexpansive mappings and the convergence of the sequence of iterates of nonexpansive and quasi-nonexpansive mappings.
Book Synopsis Order Structure and Topological Methods in Nonlinear Partial Differential Equations by : Yihong Du
Download or read book Order Structure and Topological Methods in Nonlinear Partial Differential Equations written by Yihong Du and published by World Scientific. This book was released on 2006 with total page 202 pages. Available in PDF, EPUB and Kindle. Book excerpt: The maximum principle induces an order structure for partial differential equations, and has become an important tool in nonlinear analysis. This book is the first of two volumes to systematically introduce the applications of order structure in certain nonlinear partial differential equation problems.The maximum principle is revisited through the use of the Krein-Rutman theorem and the principal eigenvalues. Its various versions, such as the moving plane and sliding plane methods, are applied to a variety of important problems of current interest. The upper and lower solution method, especially its weak version, is presented in its most up-to-date form with enough generality to cater for wide applications. Recent progress on the boundary blow-up problems and their applications are discussed, as well as some new symmetry and Liouville type results over half and entire spaces. Some of the results included here are published for the first time.
Book Synopsis Order Structure And Topological Methods In Nonlinear Partial Differential Equations: Vol. 1: Maximum Principles And Applications by : Yihong Du
Download or read book Order Structure And Topological Methods In Nonlinear Partial Differential Equations: Vol. 1: Maximum Principles And Applications written by Yihong Du and published by World Scientific. This book was released on 2006-01-12 with total page 202 pages. Available in PDF, EPUB and Kindle. Book excerpt: The maximum principle induces an order structure for partial differential equations, and has become an important tool in nonlinear analysis. This book is the first of two volumes to systematically introduce the applications of order structure in certain nonlinear partial differential equation problems.The maximum principle is revisited through the use of the Krein-Rutman theorem and the principal eigenvalues. Its various versions, such as the moving plane and sliding plane methods, are applied to a variety of important problems of current interest. The upper and lower solution method, especially its weak version, is presented in its most up-to-date form with enough generality to cater for wide applications. Recent progress on the boundary blow-up problems and their applications are discussed, as well as some new symmetry and Liouville type results over half and entire spaces. Some of the results included here are published for the first time.
Book Synopsis Topological Methods in Nonlinear Analysis by :
Download or read book Topological Methods in Nonlinear Analysis written by and published by . This book was released on 2008 with total page 414 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis Topological Methods in Differential Equations and Inclusions by : Andrzej Granas
Download or read book Topological Methods in Differential Equations and Inclusions written by Andrzej Granas and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 531 pages. Available in PDF, EPUB and Kindle. Book excerpt: The papers collected in this volume are contributions to the 33rd session of the Seminaire de Mathematiques Superieures (SMS) on "Topological Methods in Differential Equations and Inclusions". This session of the SMS took place at the Universite de Montreal in July 1994 and was a NATO Advanced Study Institute (ASI). The aim of the ASI was to bring together a considerable group of young researchers from various parts of the world and to present to them coherent surveys of some of the most recent advances in this area of Nonlinear Analysis. During the meeting 89 mathematicians from 20 countries have had the opportunity to get acquainted with various aspects of the subjects treated in the lectures as well as the chance to exchange ideas and learn about new problems arising in the field. The main topics teated in this ASI were the following: Fixed point theory for single- and multi-valued mappings including topological degree and its generalizations, and topological transversality theory; existence and multiplicity results for ordinary differential equations and inclusions; bifurcation and stability problems; ordinary differential equations in Banach spaces; second order differential equations on manifolds; the topological structure of the solution set of differential inclusions; effects of delay perturbations on dynamics of retarded delay differential equations; dynamics of reaction diffusion equations; non smooth critical point theory and applications to boundary value problems for quasilinear elliptic equations.
Book Synopsis Bifurcation and Nonlinear Eigenvalue Problems by : C. Bardos
Download or read book Bifurcation and Nonlinear Eigenvalue Problems written by C. Bardos and published by Springer. This book was released on 2006-11-14 with total page 307 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis Topological Nonlinear Analysis by : Michele Matzeu
Download or read book Topological Nonlinear Analysis written by Michele Matzeu and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 542 pages. Available in PDF, EPUB and Kindle. Book excerpt: Topological tools in Nonlinear Analysis had a tremendous develop ment during the last few decades. The three main streams of research in this field, Topological Degree, Singularity Theory and Variational Meth ods, have lately become impetuous rivers of scientific investigation. The process is still going on and the achievements in this area are spectacular. A most promising and rapidly developing field of research is the study of the role that symmetries play in nonlinear problems. Symmetries appear in a quite natural way in many problems in physics and in differential or symplectic geometry, such as closed orbits for autonomous Hamiltonian systems, configurations of symmetric elastic plates under pressure, Hopf Bifurcation, Taylor vortices, convective motions of fluids, oscillations of chemical reactions, etc . . . Some of these problems have been tackled recently by different techniques using equivariant versions of Degree, Singularity and Variations. The main purpose of the present volume is to give a survey of some of the most significant achievements obtained by topological methods in Nonlinear Analysis during the last two-three decades. The survey articles presented here reflect the personal taste and points of view of the authors (all of them well-known and distinguished specialists in their own fields) on the subject matter. A common feature of these papers is that of start ing with an historical introductory background of the different disciplines under consideration and climbing up to the heights of the most recent re sults.
Book Synopsis Geometrical Methods in Variational Problems by : N.A. Bobylov
Download or read book Geometrical Methods in Variational Problems written by N.A. Bobylov and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 556 pages. Available in PDF, EPUB and Kindle. Book excerpt: This self-contained monograph presents methods for the investigation of nonlinear variational problems. These methods are based on geometric and topological ideas such as topological index, degree of a mapping, Morse-Conley index, Euler characteristics, deformation invariant, homotopic invariant, and the Lusternik-Shnirelman category. Attention is also given to applications in optimisation, mathematical physics, control, and numerical methods. Audience: This volume will be of interest to specialists in functional analysis and its applications, and can also be recommended as a text for graduate and postgraduate-level courses in these fields.
Book Synopsis Methods for Analysis of Nonlinear Elliptic Boundary Value Problems by : I. V. Skrypnik
Download or read book Methods for Analysis of Nonlinear Elliptic Boundary Value Problems written by I. V. Skrypnik and published by American Mathematical Soc.. This book was released on 1994-01-01 with total page 370 pages. Available in PDF, EPUB and Kindle. Book excerpt: The theory of nonlinear elliptic equations is currently one of the most actively developing branches of the theory of partial differential equations. This book investigates boundary value problems for nonlinear elliptic equations of arbitrary order. In addition to monotone operator methods, a broad range of applications of topological methods to nonlinear differential equations is presented: solvability, estimation of the number of solutions, and the branching of solutions of nonlinear equations. Skrypnik establishes, by various procedures, a priori estimates and the regularity of solutions of nonlinear elliptic equations of arbitrary order. Also covered are methods of homogenization of nonlinear elliptic problems in perforated domains. The book is suitable for use in graduate courses in differential equations and nonlinear functional analysis.
Book Synopsis Topological Methods in Complementarity Theory by : G. Isac
Download or read book Topological Methods in Complementarity Theory written by G. Isac and published by Springer Science & Business Media. This book was released on 2013-04-17 with total page 691 pages. Available in PDF, EPUB and Kindle. Book excerpt: Complementarity theory is a new domain in applied mathematics and is concerned with the study of complementarity problems. These problems represent a wide class of mathematical models related to optimization, game theory, economic engineering, mechanics, fluid mechanics, stochastic optimal control etc. The book is dedicated to the study of nonlinear complementarity problems by topological methods. Audience: Mathematicians, engineers, economists, specialists working in operations research and anybody interested in applied mathematics or in mathematical modeling.
Book Synopsis Methods in Nonlinear Analysis by : Kung-Ching Chang
Download or read book Methods in Nonlinear Analysis written by Kung-Ching Chang and published by Springer Science & Business Media. This book was released on 2005-11-21 with total page 448 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book offers a systematic presentation of up-to-date material scattered throughout the literature from the methodology point of view. It reviews the basic theories and methods, with many interesting problems in partial and ordinary differential equations, differential geometry and mathematical physics as applications, and provides the necessary preparation for almost all important aspects in contemporary studies. All methods are illustrated by carefully chosen examples from mechanics, physics, engineering and geometry.
Book Synopsis Handbook of Topological Fixed Point Theory by : Robert F. Brown
Download or read book Handbook of Topological Fixed Point Theory written by Robert F. Brown and published by Springer Science & Business Media. This book was released on 2005-12-05 with total page 966 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is the first in the world literature presenting all new trends in topological fixed point theory. Until now all books connected to the topological fixed point theory were devoted only to some parts of this theory. This book will be especially useful for post-graduate students and researchers interested in the fixed point theory, particularly in topological methods in nonlinear analysis, differential equations and dynamical systems. The content is also likely to stimulate the interest of mathematical economists, population dynamics experts as well as theoretical physicists exploring the topological dynamics.
Book Synopsis Topological Methods for Variational Problems with Symmetries by : Thomas Bartsch
Download or read book Topological Methods for Variational Problems with Symmetries written by Thomas Bartsch and published by Springer. This book was released on 2006-11-15 with total page 162 pages. Available in PDF, EPUB and Kindle. Book excerpt: Symmetry has a strong impact on the number and shape of solutions to variational problems. This has been observed, for instance, in the search for periodic solutions of Hamiltonian systems or of the nonlinear wave equation; when one is interested in elliptic equations on symmetric domains or in the corresponding semiflows; and when one is looking for "special" solutions of these problems. This book is concerned with Lusternik-Schnirelmann theory and Morse-Conley theory for group invariant functionals. These topological methods are developed in detail with new calculations of the equivariant Lusternik-Schnirelmann category and versions of the Borsuk-Ulam theorem for very general classes of symmetry groups. The Morse-Conley theory is applied to bifurcation problems, in particular to the bifurcation of steady states and hetero-clinic orbits of O(3)-symmetric flows; and to the existence of periodic solutions nearequilibria of symmetric Hamiltonian systems. Some familiarity with the usualminimax theory and basic algebraic topology is assumed.
Book Synopsis Topological Methods, Variational Methods and Their Applications by : Haim Brzis
Download or read book Topological Methods, Variational Methods and Their Applications written by Haim Brzis and published by World Scientific. This book was released on 2003 with total page 302 pages. Available in PDF, EPUB and Kindle. Book excerpt: ICM 2002 Satellite Conference on Nonlinear Analysis was held in the period: August 1418, 2002 at Taiyuan, Shanxi Province, China. This conference was organized by Mathematical School of Peking University, Academy of Mathematics and System Sciences of Chinese Academy of Sciences, Mathematical school of Nankai University, and Department of Mathematics of Shanxi University, and was sponsored by Shanxi Province Education Committee, Tian Yuan Mathematics Foundation, and Shanxi University. 166 mathematicians from 21 countries and areas in the world attended the conference. 53 invited speakers and 30 contributors presented their lectures. This conference aims at an overview of the recent development in nonlinear analysis. It covers the following topics: variational methods, topological methods, fixed point theory, bifurcations, nonlinear spectral theory, nonlinear Schrvdinger equations, semilinear elliptic equations, Hamiltonian systems, central configuration in N-body problems and variational problems arising in geometry and physics.
Book Synopsis Nonlinear Diffusion Equations and Their Equilibrium States I by : W.-M. Ni
Download or read book Nonlinear Diffusion Equations and Their Equilibrium States I written by W.-M. Ni and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 359 pages. Available in PDF, EPUB and Kindle. Book excerpt: In recent years considerable interest has been focused on nonlinear diffu sion problems, the archetypical equation for these being Ut = D.u + f(u). Here D. denotes the n-dimensional Laplacian, the solution u = u(x, t) is defined over some space-time domain of the form n x [O,T], and f(u) is a given real function whose form is determined by various physical and mathematical applications. These applications have become more varied and widespread as problem after problem has been shown to lead to an equation of this type or to its time-independent counterpart, the elliptic equation of equilibrium D.u + f(u) = o. Particular cases arise, for example, in population genetics, the physics of nu clear stability, phase transitions between liquids and gases, flows in porous media, the Lend-Emden equation of astrophysics, various simplified com bustion models, and in determining metrics which realize given scalar or Gaussian curvatures. In the latter direction, for example, the problem of finding conformal metrics with prescribed curvature leads to a ground state problem involving critical exponents. Thus not only analysts, but geome ters as well, can find common ground in the present work. The corresponding mathematical problem is to determine how the struc ture of the nonlinear function f(u) influences the behavior of the solution.
Book Synopsis Variational and Topological Methods in the Study of Nonlinear Phenomena by : V. Benci
Download or read book Variational and Topological Methods in the Study of Nonlinear Phenomena written by V. Benci and published by Springer Science & Business Media. This book was released on 2002-01-08 with total page 152 pages. Available in PDF, EPUB and Kindle. Book excerpt: The articles in this volume are an outgrowth of an international conference entitled Variational and Topological Methods in the Study of Nonlinear Phe- nomena, held in Pisa in January-February 2000. Under the framework of the research project Differential Equations and the Calculus of Variations, the conference was organized to celebrate the 60th birthday of Antonio Marino, one of the leaders of the research group and a significant contrib- utor to the mathematical activity in this area of nonlinear analysis. The volume highlights recent advances in the field of nonlinear functional analysis and its applications to nonlinear partial and ordinary differential equations, with particular emphasis on variational and topological meth- ods. A broad range of topics is covered, including: concentration phenomena in PDEs, variational methods with applications to PDEs and physics, pe- riodic solutions of ODEs, computational aspects in topological methods, and mathematical models in biology. Though well-differentiated, the topics covered are unified through a com- mon perspective and approach. Unique to the work are several chapters on computational aspects and applications to biology, not usually found with such basic studies on PDEs and ODEs. The volume is an excellent reference text for researchers and graduate students in the above mentioned fields. Contributors are M. Clapp, M.J. Esteban, P. Felmer, A. Ioffe, W. Marzan- towicz, M. Mrozek, M. Musso, R. Ortega, P. Pilarczyk, M. del Pino, E. Sere, E. Schwartzman, P. Sintzoff, R. Turner, and I\f. Willem.
Book Synopsis Recent Trends in Nonlinear Analysis by : Jürgen Appell
Download or read book Recent Trends in Nonlinear Analysis written by Jürgen Appell and published by Birkhäuser. This book was released on 2012-12-06 with total page 261 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book contains a collection of 21 original research papers which report on recent developments in various fields of nonlinear analysis. The collection covers a large variety of topics ranging from abstract fields such as algebraic topology, functional analysis, operator theory, spectral theory, analysis on manifolds, partial differential equations, boundary value problems, geometry of Banach spaces, measure theory, variational calculus, and integral equations, to more application-oriented fields like control theory, numerical analysis, mathematical physics, mathematical economy, and financial mathematics. The book is addressed to all specialists interested in nonlinear functional analysis and its applications, but also to postgraduate students who want to get in touch with this important field of modern analysis. It is dedicated to Alfonso Vignoli who has essentially contributed to the field, on the occasion of his sixtieth birthday.