Positive Polynomials, Convex Integral Polytopes, and a Random Walk Problem

Download Positive Polynomials, Convex Integral Polytopes, and a Random Walk Problem PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3540479511
Total Pages : 148 pages
Book Rating : 4.5/5 (44 download)

DOWNLOAD NOW!


Book Synopsis Positive Polynomials, Convex Integral Polytopes, and a Random Walk Problem by : David E. Handelman

Download or read book Positive Polynomials, Convex Integral Polytopes, and a Random Walk Problem written by David E. Handelman and published by Springer. This book was released on 2006-11-15 with total page 148 pages. Available in PDF, EPUB and Kindle. Book excerpt: Emanating from the theory of C*-algebras and actions of tori theoren, the problems discussed here are outgrowths of random walk problems on lattices. An AGL (d,Z)-invariant (which is a partially ordered commutative algebra) is obtained for lattice polytopes (compact convex polytopes in Euclidean space whose vertices lie in Zd), and certain algebraic properties of the algebra are related to geometric properties of the polytope. There are also strong connections with convex analysis, Choquet theory, and reflection groups. This book serves as both an introduction to and a research monograph on the many interconnections between these topics, that arise out of questions of the following type: Let f be a (Laurent) polynomial in several real variables, and let P be a (Laurent) polynomial with only positive coefficients; decide under what circumstances there exists an integer n such that Pnf itself also has only positive coefficients. It is intended to reach and be of interest to a general mathematical audience as well as specialists in the areas mentioned.

Topics in Random Polynomials

Download Topics in Random Polynomials PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 9780582356221
Total Pages : 180 pages
Book Rating : 4.3/5 (562 download)

DOWNLOAD NOW!


Book Synopsis Topics in Random Polynomials by : K Farahmand

Download or read book Topics in Random Polynomials written by K Farahmand and published by CRC Press. This book was released on 1998-08-15 with total page 180 pages. Available in PDF, EPUB and Kindle. Book excerpt: Topics in Random Polynomials presents a rigorous and comprehensive treatment of the mathematical behavior of different types of random polynomials. These polynomials-the subject of extensive recent research-have many applications in physics, economics, and statistics. The main results are presented in such a fashion that they can be understood and used by readers whose knowledge of probability incorporates little more than basic probability theory and stochastic processes.

Random Polynomials

Download Random Polynomials PDF Online Free

Author :
Publisher : Academic Press
ISBN 13 : 148319146X
Total Pages : 223 pages
Book Rating : 4.4/5 (831 download)

DOWNLOAD NOW!


Book Synopsis Random Polynomials by : A. T. Bharucha-Reid

Download or read book Random Polynomials written by A. T. Bharucha-Reid and published by Academic Press. This book was released on 2014-05-10 with total page 223 pages. Available in PDF, EPUB and Kindle. Book excerpt: Probability and Mathematical Statistics: A Series of Monographs and Textbooks: Random Polynomials focuses on a comprehensive treatment of random algebraic, orthogonal, and trigonometric polynomials. The publication first offers information on the basic definitions and properties of random algebraic polynomials and random matrices. Discussions focus on Newton's formula for random algebraic polynomials, random characteristic polynomials, measurability of the zeros of a random algebraic polynomial, and random power series and random algebraic polynomials. The text then elaborates on the number and expected number of real zeros of random algebraic polynomials; number and expected number of real zeros of other random polynomials; and variance of the number of real zeros of random algebraic polynomials. Topics include the expected number of real zeros of random orthogonal polynomials and the number and expected number of real zeros of trigonometric polynomials. The book takes a look at convergence and limit theorems for random polynomials and distribution of the zeros of random algebraic polynomials, including limit theorems for random algebraic polynomials and random companion matrices and distribution of the zeros of random algebraic polynomials. The publication is a dependable reference for probabilists, statisticians, physicists, engineers, and economists.

Topics in Random Matrix Theory

Download Topics in Random Matrix Theory PDF Online Free

Author :
Publisher : American Mathematical Soc.
ISBN 13 : 0821874306
Total Pages : 298 pages
Book Rating : 4.8/5 (218 download)

DOWNLOAD NOW!


Book Synopsis Topics in Random Matrix Theory by : Terence Tao

Download or read book Topics in Random Matrix Theory written by Terence Tao and published by American Mathematical Soc.. This book was released on 2012-03-21 with total page 298 pages. Available in PDF, EPUB and Kindle. Book excerpt: The field of random matrix theory has seen an explosion of activity in recent years, with connections to many areas of mathematics and physics. However, this makes the current state of the field almost too large to survey in a single book. In this graduate text, we focus on one specific sector of the field, namely the spectral distribution of random Wigner matrix ensembles (such as the Gaussian Unitary Ensemble), as well as iid matrix ensembles. The text is largely self-contained and starts with a review of relevant aspects of probability theory and linear algebra. With over 200 exercises, the book is suitable as an introductory text for beginning graduate students seeking to enter the field.

The Random Matrix Theory of the Classical Compact Groups

Download The Random Matrix Theory of the Classical Compact Groups PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 1108317995
Total Pages : 225 pages
Book Rating : 4.1/5 (83 download)

DOWNLOAD NOW!


Book Synopsis The Random Matrix Theory of the Classical Compact Groups by : Elizabeth S. Meckes

Download or read book The Random Matrix Theory of the Classical Compact Groups written by Elizabeth S. Meckes and published by Cambridge University Press. This book was released on 2019-08-01 with total page 225 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is the first book to provide a comprehensive overview of foundational results and recent progress in the study of random matrices from the classical compact groups, drawing on the subject's deep connections to geometry, analysis, algebra, physics, and statistics. The book sets a foundation with an introduction to the groups themselves and six different constructions of Haar measure. Classical and recent results are then presented in a digested, accessible form, including the following: results on the joint distributions of the entries; an extensive treatment of eigenvalue distributions, including the Weyl integration formula, moment formulae, and limit theorems and large deviations for the spectral measures; concentration of measure with applications both within random matrix theory and in high dimensional geometry; and results on characteristic polynomials with connections to the Riemann zeta function. This book will be a useful reference for researchers and an accessible introduction for students in related fields.

High-Dimensional Probability

Download High-Dimensional Probability PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 1108415199
Total Pages : 299 pages
Book Rating : 4.1/5 (84 download)

DOWNLOAD NOW!


Book Synopsis High-Dimensional Probability by : Roman Vershynin

Download or read book High-Dimensional Probability written by Roman Vershynin and published by Cambridge University Press. This book was released on 2018-09-27 with total page 299 pages. Available in PDF, EPUB and Kindle. Book excerpt: An integrated package of powerful probabilistic tools and key applications in modern mathematical data science.

Handbook of the Tutte Polynomial and Related Topics

Download Handbook of the Tutte Polynomial and Related Topics PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 0429529171
Total Pages : 743 pages
Book Rating : 4.4/5 (295 download)

DOWNLOAD NOW!


Book Synopsis Handbook of the Tutte Polynomial and Related Topics by : Joanna A. Ellis-Monaghan

Download or read book Handbook of the Tutte Polynomial and Related Topics written by Joanna A. Ellis-Monaghan and published by CRC Press. This book was released on 2022-07-06 with total page 743 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Tutte Polynomial touches on nearly every area of combinatorics as well as many other fields, including statistical mechanics, coding theory, and DNA sequencing. It is one of the most studied graph polynomials. Handbook of the Tutte Polynomial and Related Topics is the first handbook published on the Tutte Polynomial. It consists of thirty-four chapters written by experts in the field, which collectively offer a concise overview of the polynomial’s many properties and applications. Each chapter covers a different aspect of the Tutte polynomial and contains the central results and references for its topic. The chapters are organized into six parts. Part I describes the fundamental properties of the Tutte polynomial, providing an overview of the Tutte polynomial and the necessary background for the rest of the handbook. Part II is concerned with questions of computation, complexity, and approximation for the Tutte polynomial; Part III covers a selection of related graph polynomials; Part IV discusses a range of applications of the Tutte polynomial to mathematics, physics, and biology; Part V includes various extensions and generalizations of the Tutte polynomial; and Part VI provides a history of the development of the Tutte polynomial. Features Written in an accessible style for non-experts, yet extensive enough for experts Serves as a comprehensive and accessible introduction to the theory of graph polynomials for researchers in mathematics, physics, and computer science Provides an extensive reference volume for the evaluations, theorems, and properties of the Tutte polynomial and related graph, matroid, and knot invariants Offers broad coverage, touching on the wide range of applications of the Tutte polynomial and its various specializations

Geometry of Isotropic Convex Bodies

Download Geometry of Isotropic Convex Bodies PDF Online Free

Author :
Publisher : American Mathematical Soc.
ISBN 13 : 1470414562
Total Pages : 618 pages
Book Rating : 4.4/5 (74 download)

DOWNLOAD NOW!


Book Synopsis Geometry of Isotropic Convex Bodies by : Silouanos Brazitikos

Download or read book Geometry of Isotropic Convex Bodies written by Silouanos Brazitikos and published by American Mathematical Soc.. This book was released on 2014-04-24 with total page 618 pages. Available in PDF, EPUB and Kindle. Book excerpt: The study of high-dimensional convex bodies from a geometric and analytic point of view, with an emphasis on the dependence of various parameters on the dimension stands at the intersection of classical convex geometry and the local theory of Banach spaces. It is also closely linked to many other fields, such as probability theory, partial differential equations, Riemannian geometry, harmonic analysis and combinatorics. It is now understood that the convexity assumption forces most of the volume of a high-dimensional convex body to be concentrated in some canonical way and the main question is whether, under some natural normalization, the answer to many fundamental questions should be independent of the dimension. The aim of this book is to introduce a number of well-known questions regarding the distribution of volume in high-dimensional convex bodies, which are exactly of this nature: among them are the slicing problem, the thin shell conjecture and the Kannan-Lovász-Simonovits conjecture. This book provides a self-contained and up to date account of the progress that has been made in the last fifteen years.

Asymptotic Analysis of Random Walks

Download Asymptotic Analysis of Random Walks PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 1108901204
Total Pages : 437 pages
Book Rating : 4.1/5 (89 download)

DOWNLOAD NOW!


Book Synopsis Asymptotic Analysis of Random Walks by : A. A. Borovkov

Download or read book Asymptotic Analysis of Random Walks written by A. A. Borovkov and published by Cambridge University Press. This book was released on 2020-10-29 with total page 437 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is a companion book to Asymptotic Analysis of Random Walks: Heavy-Tailed Distributions by A.A. Borovkov and K.A. Borovkov. Its self-contained systematic exposition provides a highly useful resource for academic researchers and professionals interested in applications of probability in statistics, ruin theory, and queuing theory. The large deviation principle for random walks was first established by the author in 1967, under the restrictive condition that the distribution tails decay faster than exponentially. (A close assertion was proved by S.R.S. Varadhan in 1966, but only in a rather special case.) Since then, the principle has always been treated in the literature only under this condition. Recently, the author jointly with A.A. Mogul'skii removed this restriction, finding a natural metric for which the large deviation principle for random walks holds without any conditions. This new version is presented in the book, as well as a new approach to studying large deviations in boundary crossing problems. Many results presented in the book, obtained by the author himself or jointly with co-authors, are appearing in a monograph for the first time.

Stochastic Analysis and Related Topics

Download Stochastic Analysis and Related Topics PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 354039186X
Total Pages : 384 pages
Book Rating : 4.5/5 (43 download)

DOWNLOAD NOW!


Book Synopsis Stochastic Analysis and Related Topics by : Hayri Korezlioglu

Download or read book Stochastic Analysis and Related Topics written by Hayri Korezlioglu and published by Springer. This book was released on 2006-11-14 with total page 384 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Silvri Workshop was divided into a short summer school and a working conference, producing lectures and research papers on recent developments in stochastic analysis on Wiener space. The topics treated in the lectures relate to the Malliavin calculus, the Skorohod integral and nonlinear functionals of white noise. Most of the research papers are applications of these subjects. This volume addresses researchers and graduate students in stochastic processes and theoretical physics.

Moments, Positive Polynomials and Their Applications

Download Moments, Positive Polynomials and Their Applications PDF Online Free

Author :
Publisher : World Scientific
ISBN 13 : 1848164467
Total Pages : 384 pages
Book Rating : 4.8/5 (481 download)

DOWNLOAD NOW!


Book Synopsis Moments, Positive Polynomials and Their Applications by : Jean-Bernard Lasserre

Download or read book Moments, Positive Polynomials and Their Applications written by Jean-Bernard Lasserre and published by World Scientific. This book was released on 2010 with total page 384 pages. Available in PDF, EPUB and Kindle. Book excerpt: 1. The generalized moment problem. 1.1. Formulations. 1.2. Duality theory. 1.3. Computational complexity. 1.4. Summary. 1.5. Exercises. 1.6. Notes and sources -- 2. Positive polynomials. 2.1. Sum of squares representations and semi-definite optimization. 2.2. Nonnegative versus s.o.s. polynomials. 2.3. Representation theorems : univariate case. 2.4. Representation theorems : mutivariate case. 2.5. Polynomials positive on a compact basic semi-algebraic set. 2.6. Polynomials nonnegative on real varieties. 2.7. Representations with sparsity properties. 2.8. Representation of convex polynomials. 2.9. Summary. 2.10. Exercises. 2.11. Notes and sources -- 3. Moments. 3.1. The one-dimensional moment problem. 3.2. The multi-dimensional moment problem. 3.3. The K-moment problem. 3.4. Moment conditions for bounded density. 3.5. Summary. 3.6. Exercises. 3.7. Notes and sources -- 4. Algorithms for moment problems. 4.1. The overall approach. 4.2. Semidefinite relaxations. 4.3. Extraction of solutions. 4.4. Linear relaxations. 4.5. Extensions. 4.6. Exploiting sparsity. 4.7. Summary. 4.8. Exercises. 4.9. Notes and sources. 4.10. Proofs -- 5. Global optimization over polynomials. 5.1. The primal and dual perspectives. 5.2. Unconstrained polynomial optimization. 5.3. Constrained polynomial optimization : semidefinite relaxations. 5.4. Linear programming relaxations. 5.5. Global optimality conditions. 5.6. Convex polynomial programs. 5.7. Discrete optimization. 5.8. Global minimization of a rational function. 5.9. Exploiting symmetry. 5.10. Summary. 5.11. Exercises. 5.12. Notes and sources -- 6. Systems of polynomial equations. 6.1. Introduction. 6.2. Finding a real solution to systems of polynomial equations. 6.3. Finding all complex and/or all real solutions : a unified treatment. 6.4. Summary. 6.5. Exercises. 6.6. Notes and sources -- 7. Applications in probability. 7.1. Upper bounds on measures with moment conditions. 7.2. Measuring basic semi-algebraic sets. 7.3. Measures with given marginals. 7.4. Summary. 7.5. Exercises. 7.6. Notes and sources -- 8. Markov chains applications. 8.1. Bounds on invariant measures. 8.2. Evaluation of ergodic criteria. 8.3. Summary. 8.4. Exercises. 8.5. Notes and sources -- 9. Application in mathematical finance. 9.1. Option pricing with moment information. 9.2. Option pricing with a dynamic model. 9.3. Summary. 9.4. Notes and sources -- 10. Application in control. 10.1. Introduction. 10.2. Weak formulation of optimal control problems. 10.3. Semidefinite relaxations for the OCP. 10.4. Summary. 10.5. Notes and sources -- 11. Convex envelope and representation of convex sets. 11.1. The convex envelope of a rational function. 11.2. Semidefinite representation of convex sets. 11.3. Algebraic certificates of convexity. 11.4. Summary. 11.5. Exercises. 11.6. Notes and sources -- 12. Multivariate integration 12.1. Integration of a rational function. 12.2. Integration of exponentials of polynomials. 12.3. Maximum entropy estimation. 12.4. Summary. 12.5. Exercises. 12.6. Notes and sources -- 13. Min-max problems and Nash equilibria. 13.1. Robust polynomial optimization. 13.2. Minimizing the sup of finitely many rational cunctions. 13.3. Application to Nash equilibria. 13.4. Exercises. 13.5. Notes and sources -- 14. Bounds on linear PDE. 14.1. Linear partial differential equations. 14.2. Notes and sources

Solving Systems of Polynomial Equations

Download Solving Systems of Polynomial Equations PDF Online Free

Author :
Publisher : American Mathematical Soc.
ISBN 13 : 0821832514
Total Pages : 162 pages
Book Rating : 4.8/5 (218 download)

DOWNLOAD NOW!


Book Synopsis Solving Systems of Polynomial Equations by : Bernd Sturmfels

Download or read book Solving Systems of Polynomial Equations written by Bernd Sturmfels and published by American Mathematical Soc.. This book was released on 2002 with total page 162 pages. Available in PDF, EPUB and Kindle. Book excerpt: Bridging a number of mathematical disciplines, and exposing many facets of systems of polynomial equations, Bernd Sturmfels's study covers a wide spectrum of mathematical techniques and algorithms, both symbolic and numerical.

Asymptotic Analysis of Random Walks: Light-Tailed Distributions

Download Asymptotic Analysis of Random Walks: Light-Tailed Distributions PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 1107074681
Total Pages : 437 pages
Book Rating : 4.1/5 (7 download)

DOWNLOAD NOW!


Book Synopsis Asymptotic Analysis of Random Walks: Light-Tailed Distributions by : A. A. Borovkov

Download or read book Asymptotic Analysis of Random Walks: Light-Tailed Distributions written by A. A. Borovkov and published by Cambridge University Press. This book was released on 2020-10-29 with total page 437 pages. Available in PDF, EPUB and Kindle. Book excerpt: A systematic modern treatise on large deviation theory for random walks with light tails, from one of its key creators.

Mathematical Reviews

Download Mathematical Reviews PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 860 pages
Book Rating : 4.3/5 (91 download)

DOWNLOAD NOW!


Book Synopsis Mathematical Reviews by :

Download or read book Mathematical Reviews written by and published by . This book was released on 2007 with total page 860 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Algebraic Statistics for Computational Biology

Download Algebraic Statistics for Computational Biology PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 9780521857000
Total Pages : 440 pages
Book Rating : 4.8/5 (57 download)

DOWNLOAD NOW!


Book Synopsis Algebraic Statistics for Computational Biology by : L. Pachter

Download or read book Algebraic Statistics for Computational Biology written by L. Pachter and published by Cambridge University Press. This book was released on 2005-08-22 with total page 440 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book, first published in 2005, offers an introduction to the application of algebraic statistics to computational biology.

Groups of Self-Equivalences and Related Topics

Download Groups of Self-Equivalences and Related Topics PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3540470913
Total Pages : 223 pages
Book Rating : 4.5/5 (44 download)

DOWNLOAD NOW!


Book Synopsis Groups of Self-Equivalences and Related Topics by : Renzo A. Piccinini

Download or read book Groups of Self-Equivalences and Related Topics written by Renzo A. Piccinini and published by Springer. This book was released on 2006-11-14 with total page 223 pages. Available in PDF, EPUB and Kindle. Book excerpt: Since the subject of Groups of Self-Equivalences was first discussed in 1958 in a paper of Barcuss and Barratt, a good deal of progress has been achieved. This is reviewed in this volume, first by a long survey article and a presentation of 17 open problems together with a bibliography of the subject, and by a further 14 original research articles.

Mathematics and Computation

Download Mathematics and Computation PDF Online Free

Author :
Publisher : Princeton University Press
ISBN 13 : 0691189137
Total Pages : 434 pages
Book Rating : 4.6/5 (911 download)

DOWNLOAD NOW!


Book Synopsis Mathematics and Computation by : Avi Wigderson

Download or read book Mathematics and Computation written by Avi Wigderson and published by Princeton University Press. This book was released on 2019-10-29 with total page 434 pages. Available in PDF, EPUB and Kindle. Book excerpt: From the winner of the Turing Award and the Abel Prize, an introduction to computational complexity theory, its connections and interactions with mathematics, and its central role in the natural and social sciences, technology, and philosophy Mathematics and Computation provides a broad, conceptual overview of computational complexity theory—the mathematical study of efficient computation. With important practical applications to computer science and industry, computational complexity theory has evolved into a highly interdisciplinary field, with strong links to most mathematical areas and to a growing number of scientific endeavors. Avi Wigderson takes a sweeping survey of complexity theory, emphasizing the field’s insights and challenges. He explains the ideas and motivations leading to key models, notions, and results. In particular, he looks at algorithms and complexity, computations and proofs, randomness and interaction, quantum and arithmetic computation, and cryptography and learning, all as parts of a cohesive whole with numerous cross-influences. Wigderson illustrates the immense breadth of the field, its beauty and richness, and its diverse and growing interactions with other areas of mathematics. He ends with a comprehensive look at the theory of computation, its methodology and aspirations, and the unique and fundamental ways in which it has shaped and will further shape science, technology, and society. For further reading, an extensive bibliography is provided for all topics covered. Mathematics and Computation is useful for undergraduate and graduate students in mathematics, computer science, and related fields, as well as researchers and teachers in these fields. Many parts require little background, and serve as an invitation to newcomers seeking an introduction to the theory of computation. Comprehensive coverage of computational complexity theory, and beyond High-level, intuitive exposition, which brings conceptual clarity to this central and dynamic scientific discipline Historical accounts of the evolution and motivations of central concepts and models A broad view of the theory of computation's influence on science, technology, and society Extensive bibliography