Thermal Transport in Graphene-based Nanostructures and Other Two-dimensional Materials

Download Thermal Transport in Graphene-based Nanostructures and Other Two-dimensional Materials PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : pages
Book Rating : 4.:/5 (931 download)

DOWNLOAD NOW!


Book Synopsis Thermal Transport in Graphene-based Nanostructures and Other Two-dimensional Materials by :

Download or read book Thermal Transport in Graphene-based Nanostructures and Other Two-dimensional Materials written by and published by . This book was released on 2014 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Introduction to Graphene-Based Nanomaterials

Download Introduction to Graphene-Based Nanomaterials PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 1108754376
Total Pages : 479 pages
Book Rating : 4.1/5 (87 download)

DOWNLOAD NOW!


Book Synopsis Introduction to Graphene-Based Nanomaterials by : Luis E. F. Foa Torres

Download or read book Introduction to Graphene-Based Nanomaterials written by Luis E. F. Foa Torres and published by Cambridge University Press. This book was released on 2020-01-30 with total page 479 pages. Available in PDF, EPUB and Kindle. Book excerpt: Graphene is one of the most intensively studied materials, and has unusual electrical, mechanical and thermal properties, which provide almost unlimited potential applications. This book provides an introduction to the electrical and transport properties of graphene and other two-dimensional nanomaterials, covering ab-initio to multiscale methods. Updated from the first edition, the authors have added chapters on other two-dimensional materials, spin-related phenomena, and an improved overview of Berry phase effects. Other topics include powerful order N electronic structure, transport calculations, and ac transport and multiscale transport methodologies. Chapters are complemented with concrete examples and case studies, questions and exercises, detailed appendices and computational codes. It is a valuable resource for graduate students and researchers working in physics, materials science or engineering who are interested in the field of graphene-based nanomaterials.

Thermal Transport in Carbon-Based Nanomaterials

Download Thermal Transport in Carbon-Based Nanomaterials PDF Online Free

Author :
Publisher : Elsevier
ISBN 13 : 0323473466
Total Pages : 386 pages
Book Rating : 4.3/5 (234 download)

DOWNLOAD NOW!


Book Synopsis Thermal Transport in Carbon-Based Nanomaterials by : Gang Zhang

Download or read book Thermal Transport in Carbon-Based Nanomaterials written by Gang Zhang and published by Elsevier. This book was released on 2017-06-13 with total page 386 pages. Available in PDF, EPUB and Kindle. Book excerpt: Thermal Transport in Carbon-Based Nanomaterials describes the thermal properties of various carbon nanomaterials and then examines their applications in thermal management and renewable energy. Carbon nanomaterials include: one-dimensional (1D) structures, like nanotubes; two-dimensional (2D) crystal lattice with only one-atom-thick planar sheets, like graphenes; composites based on carbon nanotube or graphene, and diamond nanowires and thin films. In the past two decades, rapid developments in the synthesis and processing of carbon-based nanomaterials have created a great desire among scientists to gain a greater understanding of thermal transport in these materials. Thermal properties in nanomaterials differ significantly from those in bulk materials because the characteristic length scales associated with the heat carriers, phonons, are comparable to the characteristic length. Carbon nanomaterials with high thermal conductivity can be applied in heat dissipation. This looks set to make a significant impact on human life and, with numerous commercial developments emerging, will become a major academic topic over the coming years. This authoritative and comprehensive book will be of great use to both the existing scientific community in this field, as well as for those who wish to enter it. Includes coverage of the most important and commonly adopted computational and experimental methods to analyze thermal properties in carbon nanomaterials Contains information about the growth of carbon nanomaterials, their thermal properties, and strategies to control thermal properties and applications, allowing readers to assess how to use each material most efficiently Offers a comprehensive overview of the theoretical background behind thermal transport in carbon nanomaterials

Two-dimensional Materials

Download Two-dimensional Materials PDF Online Free

Author :
Publisher : BoD – Books on Demand
ISBN 13 : 9535125540
Total Pages : 282 pages
Book Rating : 4.5/5 (351 download)

DOWNLOAD NOW!


Book Synopsis Two-dimensional Materials by : Pramoda Kumar Nayak

Download or read book Two-dimensional Materials written by Pramoda Kumar Nayak and published by BoD – Books on Demand. This book was released on 2016-08-31 with total page 282 pages. Available in PDF, EPUB and Kindle. Book excerpt: There are only a few discoveries and new technologies in materials science that have the potential to dramatically alter and revolutionize our material world. Discovery of two-dimensional (2D) materials, the thinnest form of materials to ever occur in nature, is one of them. After isolation of graphene from graphite in 2004, a whole other class of atomically thin materials, dominated by surface effects and showing completely unexpected and extraordinary properties, has been created. This book provides a comprehensive view and state-of-the-art knowledge about 2D materials such as graphene, hexagonal boron nitride (h-BN), transition metal dichalcogenides (TMD) and so on. It consists of 11 chapters contributed by a team of experts in this exciting field and provides latest synthesis techniques of 2D materials, characterization and their potential applications in energy conservation, electronics, optoelectronics and biotechnology.

Thermal and Electronic Transport in Graphene-based Nanostructures and Applications in Electrical Sensors

Download Thermal and Electronic Transport in Graphene-based Nanostructures and Applications in Electrical Sensors PDF Online Free

Author :
Publisher :
ISBN 13 : 9781369656749
Total Pages : 135 pages
Book Rating : 4.6/5 (567 download)

DOWNLOAD NOW!


Book Synopsis Thermal and Electronic Transport in Graphene-based Nanostructures and Applications in Electrical Sensors by : Pankaj Ghanshyam Ramnani

Download or read book Thermal and Electronic Transport in Graphene-based Nanostructures and Applications in Electrical Sensors written by Pankaj Ghanshyam Ramnani and published by . This book was released on 2016 with total page 135 pages. Available in PDF, EPUB and Kindle. Book excerpt: It is a general consensus that silicon metal-oxide-semiconductor FET (MOSFET) is approaching its scaling limits due to issues including high power dissipation, short channel effects and degraded electrostatics. In recent years, a significant amount of research has been directed towards exploring novel materials like graphene and other two-dimensional atomic crystals to replace Si. Graphene is an ideal candidate owing to its exceptional properties including high carrier mobility (exceeding 15,000 cm2 V -1 s-1), high charge carrier concentration (~1012 cm -2), low contact resistance due to tunable fermi level, excellent thermal conductivity (~5000W m-1 K-1), optical transparency (~97.7%) and flexibility. Despite all these intriguing properties, the absence of a bandgap in graphene has limited its potential applications owing to large off-state currents and low Ion/Ioff ratios observed in graphene-based field effect transistors (FETs). Additionally, most of these experimental studies are conducted using pristine graphene isolated by mechanical exfoliation of graphite, which is not a practical approach for large scale synthesis of graphene.

Thermoelectricity and Heat Transport in Graphene and Other 2D Nanomaterials

Download Thermoelectricity and Heat Transport in Graphene and Other 2D Nanomaterials PDF Online Free

Author :
Publisher : Elsevier
ISBN 13 : 0323444903
Total Pages : 534 pages
Book Rating : 4.3/5 (234 download)

DOWNLOAD NOW!


Book Synopsis Thermoelectricity and Heat Transport in Graphene and Other 2D Nanomaterials by : Serhii Shafraniuk

Download or read book Thermoelectricity and Heat Transport in Graphene and Other 2D Nanomaterials written by Serhii Shafraniuk and published by Elsevier. This book was released on 2017-07-15 with total page 534 pages. Available in PDF, EPUB and Kindle. Book excerpt: Thermoelectricity and Heat Transport in Graphene and Other 2D Nanomaterials describes thermoelectric phenomena and thermal transport in graphene and other 2-dimentional nanomaterials and devices. Graphene, which is an example of an atomic monolayered material, has become the most important growth area in materials science research, stimulating an interest in other atomic monolayeric materials. The book analyses flow management, measurement of the local temperature at the nanoscale level and thermoelectric transducers, with reference to both graphene and other 2D nanomaterials. The book covers in detail the mechanisms of thermoelectricity, thermal transport, interface phenomena, quantum dots, non-equilibrium states, scattering and dissipation, as well as coherent transport in low-dimensional junctions in graphene and its allotropes, transition metal dichalcogenides and boron nitride. This book aims to show readers how to improve thermoelectric transducer efficiency in graphene and other nanomaterials. The book describes basic ingredients of such activity, allowing readers to gain a greater understanding of fundamental issues related to the heat transport and the thermoelectric phenomena of nanomaterials. It contains a thorough analysis and comparison between theory and experiments, complemented with a variety of practical examples. Shows readers how to improve the efficiency of heat transfer in graphene and other nanomaterials with analysis of different methodologies Includes fundamental information on the thermoelectric properties of graphene and other atomic monolayers, providing a valuable reference source for materials scientists and engineers Covers the important models of thermoelectric phenomena and thermal transport in the 2D nanomaterials and nanodevices, allowing readers to gain a greater understanding of the factors behind the efficiency of heat transport in a variety of nanomaterials

Electronic and Thermal Properties of Graphene

Download Electronic and Thermal Properties of Graphene PDF Online Free

Author :
Publisher : Mdpi AG
ISBN 13 : 9783039364008
Total Pages : 322 pages
Book Rating : 4.3/5 (64 download)

DOWNLOAD NOW!


Book Synopsis Electronic and Thermal Properties of Graphene by : Kyong Yop Rhee

Download or read book Electronic and Thermal Properties of Graphene written by Kyong Yop Rhee and published by Mdpi AG. This book was released on 2020-07 with total page 322 pages. Available in PDF, EPUB and Kindle. Book excerpt: This Special Issue includes recent research articles and extensive reviews on graphene-based next-generation electronics, bringing together perspectives from different branches of science and engineering. The papers presented in this volume cover experimental, computational and theoretical aspects of the electrical and thermal properties of graphene and its applications in batteries, electrodes, sensors and ferromagnetism. In addition, this Special Issue covers many important state-of-the-art technologies and methodologies regarding the synthesis, fabrication, characterization and applications of graphene-based nanocomposites.

Thermal Transport in Low-dimensional Materials

Download Thermal Transport in Low-dimensional Materials PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 360 pages
Book Rating : 4.:/5 (94 download)

DOWNLOAD NOW!


Book Synopsis Thermal Transport in Low-dimensional Materials by : Prabhakar Marepalli

Download or read book Thermal Transport in Low-dimensional Materials written by Prabhakar Marepalli and published by . This book was released on 2015 with total page 360 pages. Available in PDF, EPUB and Kindle. Book excerpt: Recent years have witnessed a paradigm shift in the world of electronics. Researchers have not only continued to postpone the long dreaded end-of-Moore’s-law, but have also opened up a new world of possibilities with electronics. The future of electronics is widely anticipated to be dominated by wearable and implantable devices, the realization of which will be made possible by the discovery of new materials. Graphene and hexagonal boron nitride (hBN) are two such materials that have shown promising properties to make these devices possible. It has been shown that an energy bandgap can be opened in graphene by patterning it as a narrow ribbon, by applying an electric displacement field to a bilayer configuration, and by other means. The possibility of tuning the bandgap makes graphene an ideal channel material for future electronics. Similarly, hexagonal boron nitride (hBN) and its ribbon configurations have been shown to be excellent dielectric materials. In addition, the similarities in the atomic configurations of graphene and hBN allow them to conform extremely well to each other, achieving atomically smooth interfaces. Graphene devices on hBN substrates have been shown to have mobilities an order of magnitude larger than graphene devices fabricated on silicon dioxide. In addition to their outstanding electrical properties, graphene and hBN have been shown to have excellent thermal properties compared to their traditional counterparts (silicon and silicon dioxide, respectively). More specifically, these materials have been shown to have size dependent thermal properties which may be used to tune device performance. In this thesis, we study the thermal transport of three important classes of materials – graphene nanoribbons, hBN nanoribbons and graphene-hBN heterostructures using the phonon Boltzmann transport equation in a linearized framework. An exact solution of the Boltzmann transport equation is obtained ensuring that normal and umklapp phonon scattering processes are appropriately treated. In the first part of the thesis, we present a computational technique called method of automatic code differentiation to calculate sensitivities in nanoscale thermal transport simulations. Key phonon parameters like force constants, group velocities, the Gruneisen parameter, etc., which can be expressed as sensitivities or derivatives, are computed using this technique. The derivatives computed using this technique are exact and can be generalized to any order with minimal effort. This technique can be unintrusively integrated with existing first-principles simulation codes to obtain the sensitivities of parameters computed therein to chosen inputs. The next focus is to investigate the thermal properties of three main classes of materials – graphene nanoribbons, hBN nanoribbons,and graphene-hBN heterostructures. For nanoribbons, we consider ribbons of varying widths to investigate the transition of key thermal properties with width. The lattice structure of the ribbon structures considered is fully resolved. An efficient parallelization technique is developed to handle the large number of atoms in a unit cell. The thermal conductivity is obtained by an iterative solution of the linearized Boltzmann transport equation. For graphene and hBN ribbons, we find that the thermal conductivity increases with the ribbon width following a power-law trend. The rate of increase of thermal conductivity with width for hBN ribbons is found to be slower compared to graphene. Flexural phonons are found to contribute to the majority of heat conduction in both the materials. Frequency- and polarization-resolved transport is analyzed for ribbon of all widths. The thermal conductivity of single- and few-layer hexagonal boron nitride is also computed and compared with measured data. It is found that the thermal conductivity of hBN based nanostructures (single-layer, few-layer and ribbons) is around 6-8 times smaller than that for the corresponding graphene-based nanostructure. The effect of strain in both these materials is investigated. We find that the thermal conductivity of single-layer hBN is very sensitive to strain whereas graphene shows relatively less sensitivity for the same strains. Finally, thermal transport in graphene-hBN heterostructures is simulated. Two different structures are considered – single-layer graphene on an hBN substrate, and bilayer graphene on an hBN substrate. Substrates of different thickness are considered. Due to the weak interlayer coupling in these heterostructures, it is found that the phonon dispersion remains largely unchanged from the dispersions of the individual layers. The only difference in dispersion is noticed for flexural phonons, which are the only modes affected by interlayer coupling. The addition of an hBN layer underneath the graphene/bilayer graphene layer is found to drastically reduce the thermal conductivity of the heterostructures. This reduction is due to breakdown of the selection rule for flexural phonons which results in increased scattering channels for these phonons. The thermal conductivity gradually decreases, saturating to a bulk value with an increase in the number of hBN layers. The results presented in this thesis are expected to help guide the design of graphene/hBN based flexible electronics.

Phonon Thermal Transport in Silicon-Based Nanomaterials

Download Phonon Thermal Transport in Silicon-Based Nanomaterials PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 9811326371
Total Pages : 94 pages
Book Rating : 4.8/5 (113 download)

DOWNLOAD NOW!


Book Synopsis Phonon Thermal Transport in Silicon-Based Nanomaterials by : Hai-Peng Li

Download or read book Phonon Thermal Transport in Silicon-Based Nanomaterials written by Hai-Peng Li and published by Springer. This book was released on 2018-09-08 with total page 94 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this Brief, authors introduce the advance in theoretical and experimental techniques for determining the thermal conductivity in nanomaterials, and focus on review of their recent theoretical studies on the thermal properties of silicon–based nanomaterials, such as zero–dimensional silicon nanoclusters, one–dimensional silicon nanowires, and graphenelike two–dimensional silicene. The specific subject matters covered include: size effect of thermal stability and phonon thermal transport in spherical silicon nanoclusters, surface effects of phonon thermal transport in silicon nanowires, and defects effects of phonon thermal transport in silicene. The results obtained are supplemented by numerical calculations, presented as tables and figures. The potential applications of these findings in nanoelectrics and thermoelectric energy conversion are also discussed. In this regard, this Brief represents an authoritative, systematic, and detailed description of the current status of phonon thermal transport in silicon–based nanomaterials. This Brief should be a highly valuable reference for young scientists and postgraduate students active in the fields of nanoscale thermal transport and silicon-based nanomaterials.

Graphene and 2D Materials in Heat Transfer

Download Graphene and 2D Materials in Heat Transfer PDF Online Free

Author :
Publisher : Elsevier
ISBN 13 : 0128219572
Total Pages : 352 pages
Book Rating : 4.1/5 (282 download)

DOWNLOAD NOW!


Book Synopsis Graphene and 2D Materials in Heat Transfer by : Mohammad Khalid

Download or read book Graphene and 2D Materials in Heat Transfer written by Mohammad Khalid and published by Elsevier. This book was released on 2022-08-01 with total page 352 pages. Available in PDF, EPUB and Kindle. Book excerpt: Heat transfer is a major engineering challenge that has implications in several areas including space, energy, transportation, manufacturing, and medicine. Graphene and other 2D materials have outstanding thermo-physical properties. As a result, these materials are being exploited in various applications. Although several reports have been published on fundamental heat transfer aspects of such materials, the topic remains challenging to understand for many who are new to it. Graphene and 2D Materials in Heat Transfer: Fundamentals and Applications aims to provide readers with the most recent information on the synthesis and applications of graphene in heat transfer. Furthermore, mechanical and thermal properties of 2D materials, solid-liquid interface phonon transfer at the molecular level, methods and observations of transport phenomena in nano-micro domains will be addressed. The book also offers detailed coverage of the emerging applications of 2D nanofluids and nanolubricants as alternatives to conventional heat transfer fluids The book explores applications in microchannel heat sinks, micro heat exchangers, and micro heat pipes, molecular dynamics (MD) simulations for heat transport problems related to 2D materials and applications. In addition, convective heat transfer approaches for 2D materials and nanocomposites are also addressed. This is an important reference source for materials scientists and engineers who want to learn more about how graphene and other classes of 2D materials are being used as heat transfer agents. Provides readers with a single information source to learn about how graphene and other 2D materials are being used as heat transfer agents Explains why the properties of graphene make this an effective materials for heat transfer Outlines the major challenges of using graphene as a heat transfer agent

Graphene and Other 2D Layered Nanomaterial-Based Films

Download Graphene and Other 2D Layered Nanomaterial-Based Films PDF Online Free

Author :
Publisher : MDPI
ISBN 13 : 3039219022
Total Pages : 138 pages
Book Rating : 4.0/5 (392 download)

DOWNLOAD NOW!


Book Synopsis Graphene and Other 2D Layered Nanomaterial-Based Films by : Federico Cesano

Download or read book Graphene and Other 2D Layered Nanomaterial-Based Films written by Federico Cesano and published by MDPI. This book was released on 2019-12-12 with total page 138 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is dedicated to highlighting some relevant advances in the field of thin films and coatings based on two-dimensional crystals and layered nanomaterials. Due to their layered structure, graphene and a variety of new 2D inorganic nanosystems, called “graphene analogues”, have all attracted tremendous interest due to their unprecedented properties/superior performance, and may find applications in many fields from electronics to biotechnology. These two-dimensional systems are ultrathin and, hence, tend to be flexible, also presenting distinctive and nearly intrinsic characteristics, including electronic, magnetic, optical, thermal conductivity, and superconducting properties. Furthermore, the combination of different structures and synergetic effects may open new and unprecedented perspectives, making these ideal advanced materials for multifunctional assembled systems. As far as the field of coatings is concerned, new layered nanostructures may offer unique and multifunctional properties, including gas barrier, lubricant, conductive, magnetic, photoactive, self-cleaning, and/or antimicrobial surfaces. This book contains new findings on the synthesis and perspectives of multifunctional films that are at the forefront of the science and coating technologies.

Introduction to Graphene-Based Nanomaterials

Download Introduction to Graphene-Based Nanomaterials PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 1107030838
Total Pages : 425 pages
Book Rating : 4.1/5 (7 download)

DOWNLOAD NOW!


Book Synopsis Introduction to Graphene-Based Nanomaterials by : Luis E. F. Foa Torres

Download or read book Introduction to Graphene-Based Nanomaterials written by Luis E. F. Foa Torres and published by Cambridge University Press. This book was released on 2014-01-23 with total page 425 pages. Available in PDF, EPUB and Kindle. Book excerpt: A detailed primer describing the most effective theoretical and computational methods and tools for simulating graphene-based systems.

Thermal Transport in Low Dimensions

Download Thermal Transport in Low Dimensions PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3319292617
Total Pages : 418 pages
Book Rating : 4.3/5 (192 download)

DOWNLOAD NOW!


Book Synopsis Thermal Transport in Low Dimensions by : Stefano Lepri

Download or read book Thermal Transport in Low Dimensions written by Stefano Lepri and published by Springer. This book was released on 2016-04-07 with total page 418 pages. Available in PDF, EPUB and Kindle. Book excerpt: Understanding non-equilibrium properties of classical and quantum many-particle systems is one of the goals of contemporary statistical mechanics. Besides its own interest for the theoretical foundations of irreversible thermodynamics(e.g. of the Fourier's law of heat conduction), this topic is also relevant to develop innovative ideas for nanoscale thermal management with possible future applications to nanotechnologies and effective energetic resources. The first part of the volume (Chapters 1-6) describes the basic models, the phenomenology and the various theoretical approaches to understand heat transport in low-dimensional lattices (1D e 2D). The methods described will include equilibrium and nonequilibrium molecular dynamics simulations, hydrodynamic and kinetic approaches and the solution of stochastic models. The second part (Chapters 7-10) deals with applications to nano and microscale heat transfer, as for instance phononic transport in carbon-based nanomaterials, including the prominent case of nanotubes and graphene. Possible future developments on heat flow control and thermoelectric energy conversion will be outlined. This volume aims at being the first step for graduate students and researchers entering the field as well as a reference for the community of scientists that, from different backgrounds (theoretical physics, mathematics, material sciences and engineering), has grown in the recent years around those themes.

Two-Dimensional Nanostructures

Download Two-Dimensional Nanostructures PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1439866651
Total Pages : 325 pages
Book Rating : 4.4/5 (398 download)

DOWNLOAD NOW!


Book Synopsis Two-Dimensional Nanostructures by : Mahmood Aliofkhazraei

Download or read book Two-Dimensional Nanostructures written by Mahmood Aliofkhazraei and published by CRC Press. This book was released on 2012-05-02 with total page 325 pages. Available in PDF, EPUB and Kindle. Book excerpt: After the 2010 Nobel Prize in Physics was awarded to Andre Geim and Konstantin Novoselov "for groundbreaking experiments regarding the two-dimensional material graphene," even more research and development efforts have been focused on two-dimensional nanostructures. Illustrating the importance of this area in future applications, Two-Dimensional Nanostructures covers the fabrication methods and properties of these materials. The authors begin with discussions on the properties, size effect, applications, classification groups, and growth of nanostructures. They then describe various characterization and fabrication methods, such as spectrometry, low-energy electron diffraction, physical and chemical vapor deposition, and molecular beam epitaxy. The remainder of the text focuses on mechanical, chemical, and physical properties and fabrication methods, including a new mechanical method for fabricating graphene layers and a model for relating the features and structures of nanostructured thin films. With companies already demonstrating the capabilities of graphene in a flexible touch-screen and a 150 GHz transistor, nanostructures are on their way to replacing silicon as the materials of choice in electronics and other areas. This book aids you in understanding the current chemical, mechanical, and physical processes for producing these "miracle materials."

A First-principles Investigation of the Transition Between Two- and Three-dimensional Thermal Transport in Graphene and Graphite

Download A First-principles Investigation of the Transition Between Two- and Three-dimensional Thermal Transport in Graphene and Graphite PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 0 pages
Book Rating : 4.:/5 (134 download)

DOWNLOAD NOW!


Book Synopsis A First-principles Investigation of the Transition Between Two- and Three-dimensional Thermal Transport in Graphene and Graphite by : Patrick Strongman

Download or read book A First-principles Investigation of the Transition Between Two- and Three-dimensional Thermal Transport in Graphene and Graphite written by Patrick Strongman and published by . This book was released on 2019 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Two-dimensional materials have become a popular research area over the past two decades because of their unique physical properties. The low dimensionality of these materials leads to interesting, and useful, transport properties such as thickness-dependent band gaps and high electrical and thermal conductivity. These materials have applications in nanoelectronics, optoelectronics, and thermoelectric energy generation, the performance of which depends sensitively on understanding and controlling how heat transport occurs. Most low dimensional materials can be derived by isolating them from their bulk counterparts, which are often comprised of stacks of the two-dimensional layers that are weakly bound together. These layered bulk materials often maintain some of the two-dimensional characteristics of their monolayer form because of the weak interlayer bonds. One common example of such a "quasi-2D" material is graphite, which is made of layered carbon sheets, i.e. graphene. When going from graphite to graphene the room-temperature in-plane thermal conductivity varies from approx. 2000 W/m K to 5800 W/m K, respectively. Both values are exceptionally high, but there is still a large difference between the two. Nevertheless, the majority of studies focus either on the bulk or low-dimensional versions of materials, with little focus on how the transition from 3D to 2D influences the microscopic properties and transport characteristics. The purpose of this study was to explain how the thermal transport properties of layered materials transition between two and three dimensions. Graphene and graphite were used as simple materials to model this transition. The thermal transport properties were calculated from first-principles using density functional theory (DFT) and iterative solutions to the Boltzmann transport equation (BTE). The transition between two and three dimensions was modelled by systematically moving the layers of graphite apart from each other until they were essentially isolated graphene sheets. The converged $\kappa$ values of the limiting cases of graphite and graphene agree with experimental measurements and previous calculations, with the stretched cases showing a monotonically increasing thermal conductivity from $\kappa_{\text{graphite}}$ to $\kappa_{\text{graphene}}$. Surprisingly, the largest variation in the thermal transport properties resulted from changes in the phonon dispersion. This is contrary to the previous belief that the difference in $\kappa$ resulted from certain three-phonon selection rules in graphene, which reduce the scattering probability, and do not apply to graphite. The selection rules appear to mostly still apply to graphite and the stretched graphite cases, indicating that the primary mechanism resulting in the differences between $\kappa_{\text{graphene}}$ and $\kappa_{\text{graphite}}$ was the shape of the phonon dispersion, and a corresponding shift in the phonon DOS. This type of analysis could be applied to other layered materials in the future to identify materials with the potential to be exceptional thermal conductors.

Surface Engineering of Graphene

Download Surface Engineering of Graphene PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3030302075
Total Pages : 271 pages
Book Rating : 4.0/5 (33 download)

DOWNLOAD NOW!


Book Synopsis Surface Engineering of Graphene by : Sumanta Sahoo

Download or read book Surface Engineering of Graphene written by Sumanta Sahoo and published by Springer Nature. This book was released on 2019-11-01 with total page 271 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents the state of the art in the processing, properties, and applications in various fields of science and technology related to graphene and its derivatives. It also discusses the limitations and drawbacks of graphene due to some of its intrinsic properties. Further, it provides a brief overview of graphene analogs, comparing the properties of graphene with those of other similar 2D materials.

Thermal Transport in Novel Three Dimensional Carbon Nanostructures

Download Thermal Transport in Novel Three Dimensional Carbon Nanostructures PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 0 pages
Book Rating : 4.:/5 (957 download)

DOWNLOAD NOW!


Book Synopsis Thermal Transport in Novel Three Dimensional Carbon Nanostructures by : Jungkyu Park

Download or read book Thermal Transport in Novel Three Dimensional Carbon Nanostructures written by Jungkyu Park and published by . This book was released on 2016 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Three-dimensional (3D) nanostructures comprised of one-dimensional (1D) and/or two-dimensional (2D) nanomaterials have several advantages over their base nanomaterials. Due to their dimensionally confined structures, for example, 1D carbon nanotubes (CNTs) and 2D graphene exhibit strong direction-dependent thermal transport properties with extremely inefficient cross-plane properties. However, 3D carbon nanostructures such as pillared graphene structures (PGS) are expected to be efficient in both in-plane and cross-plane thermal transport. The aim of this thesis is providing the detailed understanding of thermal transport in 3D carbon nanostructures comprised of CNTs and graphene. Reverse non-equilibrium molecular dynamics simulations were used to show that PGS and CNT networks can have both high in-plane and high cross-plane thermal conductivities comparable to their base nanomaterials, i.e. CNTs and graphene, and also to show that their thermal properties are tunable through altering their architectures. The results indicate that thermal resistances at CNT-graphene junctions result from the combined effect of phonon scattering at the junctions with distorted carbon-carbon bonds and the change in dimensionality of the phonon transport medium as phonons propagate from CNTs (1D) to graphene (2D) and then again to CNT. Moreover, wave packet analysis on SWCNT networks revealed that SWCNT-SWCNT junctions with lager diameter transmit thermal energy more efficiently than the junctions with smaller diameter, and also revealed that SWCNT-SWCNT T-junctions are more efficient in thermal energy transmission than X-junctions. A new experimental method for thermal conductivity measurements in 2D nanosheets was developed. The new method ensures a 1D heat conduction in a 2D sample by creating a spatially uniform temperature profile on the heated side of the sample, and thus improves the accuracy of the measurement in a 2D structure. A MEMS device that can measure the thermal conductivity of a graphene layer using this method is currently being fabricated for the validation of the method.