Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Theory Of Matrices
Download Theory Of Matrices full books in PDF, epub, and Kindle. Read online Theory Of Matrices ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis Applications of the Theory of Matrices by : F. R. Gantmacher
Download or read book Applications of the Theory of Matrices written by F. R. Gantmacher and published by Courier Corporation. This book was released on 2005-01-01 with total page 336 pages. Available in PDF, EPUB and Kindle. Book excerpt: The breadth of matrix theory's applications is reflected by this volume, which features material of interest to applied mathematicians as well as to control engineers studying stability of a servo-mechanism and numerical analysts evaluating the roots of a polynomial. Starting with a survey of complex symmetric, antisymmetric, and orthogonal matrices, the text advances to explorations of singular bundles of matrices and matrices with nonnegative elements. Applied mathematicians will take particular note of the full and readable chapter on applications of matrix theory to the study of systems of linear differential equations, and the text concludes with an exposition on the Routh-Hurwitz problem plus several helpful appendixes. 1959 edition.
Book Synopsis The Theory of Matrices by : Feliks Ruvimovich Gantmakher
Download or read book The Theory of Matrices written by Feliks Ruvimovich Gantmakher and published by . This book was released on 1960 with total page 296 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis The Theory of Matrices by : Peter Lancaster
Download or read book The Theory of Matrices written by Peter Lancaster and published by Academic Press. This book was released on 1985-05-28 with total page 590 pages. Available in PDF, EPUB and Kindle. Book excerpt: Matrix algebra; Determinants, inverse matrices, and rank; Linear, euclidean, and unitary spaces; Linear transformations and matrices; Linear transformations in unitary spaces and simple matrices; The jordan canonical form: a geometric approach; Matrix polynomials and normal forms; The variational method; Functions of matrices; Norms and bounds for eigenvalues; Perturbation theory; Linear matrices equations and generalized inverses; Stability problems; Matrix polynomials; Nonnegative matrices.
Download or read book Matrices written by Denis Serre and published by Springer Science & Business Media. This book was released on 2007-12-18 with total page 215 pages. Available in PDF, EPUB and Kindle. Book excerpt: Clear and concise introduction to matrices with elegant proofs; Of interest to scientists from many disciplines; Gives many interesting applications to different parts of mathematics, such as algebra, analysis and complexity theory; Contains 160 exercises, half of them on advanced material; Includes at least one advanced result per chapter
Book Synopsis The Mathematics of Matrices by : Philip J. Davis
Download or read book The Mathematics of Matrices written by Philip J. Davis and published by John Wiley & Sons. This book was released on 1973 with total page 376 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Matrix Theory written by Fuzhen Zhang and published by Springer Science & Business Media. This book was released on 2013-03-14 with total page 290 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume concisely presents fundamental ideas, results, and techniques in linear algebra and mainly matrix theory. Each chapter focuses on the results, techniques, and methods that are beautiful, interesting, and representative, followed by carefully selected problems. For many theorems several different proofs are given. The only prerequisites are a decent background in elementary linear algebra and calculus.
Book Synopsis Matrix Theory: A Second Course by : James M. Ortega
Download or read book Matrix Theory: A Second Course written by James M. Ortega and published by Springer Science & Business Media. This book was released on 1987-02-28 with total page 278 pages. Available in PDF, EPUB and Kindle. Book excerpt: Linear algebra and matrix theory are essentially synonymous terms for an area of mathematics that has become one of the most useful and pervasive tools in a wide range of disciplines. It is also a subject of great mathematical beauty. In consequence of both of these facts, linear algebra has increasingly been brought into lower levels of the curriculum, either in conjunction with the calculus or separate from it but at the same level. A large and still growing number of textbooks has been written to satisfy this need, aimed at students at the junior, sophomore, or even freshman levels. Thus, most students now obtaining a bachelor's degree in the sciences or engineering have had some exposure to linear algebra. But rarely, even when solid courses are taken at the junior or senior levels, do these students have an adequate working knowledge of the subject to be useful in graduate work or in research and development activities in government and industry. In particular, most elementary courses stop at the point of canonical forms, so that while the student may have "seen" the Jordan and other canonical forms, there is usually little appreciation of their usefulness. And there is almost never time in the elementary courses to deal with more specialized topics like nonnegative matrices, inertia theorems, and so on. In consequence, many graduate courses in mathematics, applied mathe matics, or applications develop certain parts of matrix theory as needed.
Download or read book Matrix Theory written by Joel N. Franklin and published by Courier Corporation. This book was released on 2012-07-31 with total page 319 pages. Available in PDF, EPUB and Kindle. Book excerpt: Mathematically rigorous introduction covers vector and matrix norms, the condition-number of a matrix, positive and irreducible matrices, much more. Only elementary algebra and calculus required. Includes problem-solving exercises. 1968 edition.
Download or read book Matrices written by Denis Serre and published by Springer Science & Business Media. This book was released on 2010-10-26 with total page 291 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this book, Denis Serre begins by providing a clean and concise introduction to the basic theory of matrices. He then goes on to give many interesting applications of matrices to different aspects of mathematics and also other areas of science and engineering. With forty percent new material, this second edition is significantly different from the first edition. Newly added topics include: • Dunford decomposition, • tensor and exterior calculus, polynomial identities, • regularity of eigenvalues for complex matrices, • functional calculus and the Dunford–Taylor formula, • numerical range, • Weyl's and von Neumann’s inequalities, and • Jacobi method with random choice. The book mixes together algebra, analysis, complexity theory and numerical analysis. As such, this book will provide many scientists, not just mathematicians, with a useful and reliable reference. It is intended for advanced undergraduate and graduate students with either applied or theoretical goals. This book is based on a course given by the author at the École Normale Supérieure de Lyon.
Download or read book Theory Of Matrices written by B S Vatssa and published by New Age International. This book was released on 2007 with total page 288 pages. Available in PDF, EPUB and Kindle. Book excerpt: This Book Enables Students To Thoroughly Master Pre-College Mathematics And Helps Them To Prepare For Various Entrance (Screening) Tests With Skill And Confidence.The Book Thoroughly Explains The Following: 1. Algebra 2. Trigonometry 3. Co-Ordinate Geometry 4. Three Dimensional Geometry 5. Calculus 6. Vectors 7. StatisticsIn Addition To Theory, The Book Includes A Large Number Of -Solved Examples -Practice Problems With Answers -Objective Questions Including Multiple Choice, True/False And Fill-In-The-Blanks -Model Test Papers And Iit Screening Tests For Self-Test The Language Is Clear And Simple Throughout The Book And The Entire Subject Is Explained In An Interesting And Easy-To-Understand Manner.
Book Synopsis Linear Algebra and Matrix Theory by : Robert R. Stoll
Download or read book Linear Algebra and Matrix Theory written by Robert R. Stoll and published by Courier Corporation. This book was released on 2012-10-17 with total page 290 pages. Available in PDF, EPUB and Kindle. Book excerpt: Advanced undergraduate and first-year graduate students have long regarded this text as one of the best available works on matrix theory in the context of modern algebra. Teachers and students will find it particularly suited to bridging the gap between ordinary undergraduate mathematics and completely abstract mathematics. The first five chapters treat topics important to economics, psychology, statistics, physics, and mathematics. Subjects include equivalence relations for matrixes, postulational approaches to determinants, and bilinear, quadratic, and Hermitian forms in their natural settings. The final chapters apply chiefly to students of engineering, physics, and advanced mathematics. They explore groups and rings, canonical forms for matrixes with respect to similarity via representations of linear transformations, and unitary and Euclidean vector spaces. Numerous examples appear throughout the text.
Author :Cyrus Colton MacDuffee Publisher :Springer Science & Business Media ISBN 13 :364299234X Total Pages :121 pages Book Rating :4.6/5 (429 download)
Book Synopsis The Theory of Matrices by : Cyrus Colton MacDuffee
Download or read book The Theory of Matrices written by Cyrus Colton MacDuffee and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 121 pages. Available in PDF, EPUB and Kindle. Book excerpt: Matric algebra is a mathematical abstraction underlying many seemingly diverse theories. Thus bilinear and quadratic forms, linear associative algebra (hypercomplex systems), linear homogeneous trans formations and linear vector functions are various manifestations of matric algebra. Other branches of mathematics as number theory, differential and integral equations, continued fractions, projective geometry etc. make use of certain portions of this subject. Indeed, many of the fundamental properties of matrices were first discovered in the notation of a particular application, and not until much later re cognized in their generality. It was not possible within the scope of this book to give a completely detailed account of matric theory, nor is it intended to make it an authoritative history of the subject. It has been the desire of the writer to point out the various directions in which the theory leads so that the reader may in a general way see its extent. While some attempt has been made to unify certain parts of the theory, in general the material has been taken as it was found in the literature, the topics discussed in detail being those in which extensive research has taken place. For most of the important theorems a brief and elegant proof has sooner or later been found. It is hoped that most of these have been incorporated in the text, and that the reader will derive as much plea sure from reading them as did the writer.
Book Synopsis Introduction to Matrix Theory by : Arindama Singh
Download or read book Introduction to Matrix Theory written by Arindama Singh and published by Springer Nature. This book was released on 2021-08-16 with total page 199 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is designed to serve as a textbook for courses offered to undergraduate and postgraduate students enrolled in Mathematics. Using elementary row operations and Gram-Schmidt orthogonalization as basic tools the text develops characterization of equivalence and similarity, and various factorizations such as rank factorization, OR-factorization, Schurtriangularization, Diagonalization of normal matrices, Jordan decomposition, singular value decomposition, and polar decomposition. Along with Gauss-Jordan elimination for linear systems, it also discusses best approximations and least-squares solutions. The book includes norms on matrices as a means to deal with iterative solutions of linear systems and exponential of a matrix. The topics in the book are dealt with in a lively manner. Each section of the book has exercises to reinforce the concepts, and problems have been added at the end of each chapter. Most of these problems are theoretical, and they do not fit into the running text linearly. The detailed coverage and pedagogical tools make this an ideal textbook for students and researchers enrolled in senior undergraduate and beginning postgraduate mathematics courses.
Book Synopsis Theory of Matrices. (Third Printing.). by : Sam PERLIS
Download or read book Theory of Matrices. (Third Printing.). written by Sam PERLIS and published by . This book was released on 1958 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis Functions of Matrices by : Nicholas J. Higham
Download or read book Functions of Matrices written by Nicholas J. Higham and published by SIAM. This book was released on 2008-01-01 with total page 445 pages. Available in PDF, EPUB and Kindle. Book excerpt: A thorough and elegant treatment of the theory of matrix functions and numerical methods for computing them, including an overview of applications, new and unpublished research results, and improved algorithms. Key features include a detailed treatment of the matrix sign function and matrix roots; a development of the theory of conditioning and properties of the Fre;chet derivative; Schur decomposition; block Parlett recurrence; a thorough analysis of the accuracy, stability, and computational cost of numerical methods; general results on convergence and stability of matrix iterations; and a chapter devoted to the f(A)b problem. Ideal for advanced courses and for self-study, its broad content, references and appendix also make this book a convenient general reference. Contains an extensive collection of problems with solutions and MATLAB implementations of key algorithms.
Book Synopsis Introduction to Random Matrices by : Giacomo Livan
Download or read book Introduction to Random Matrices written by Giacomo Livan and published by Springer. This book was released on 2018-01-16 with total page 122 pages. Available in PDF, EPUB and Kindle. Book excerpt: Modern developments of Random Matrix Theory as well as pedagogical approaches to the standard core of the discipline are surprisingly hard to find in a well-organized, readable and user-friendly fashion. This slim and agile book, written in a pedagogical and hands-on style, without sacrificing formal rigor fills this gap. It brings Ph.D. students in Physics, as well as more senior practitioners, through the standard tools and results on random matrices, with an eye on most recent developments that are not usually covered in introductory texts. The focus is mainly on random matrices with real spectrum.The main guiding threads throughout the book are the Gaussian Ensembles. In particular, Wigner’s semicircle law is derived multiple times to illustrate several techniques (e.g., Coulomb gas approach, replica theory).Most chapters are accompanied by Matlab codes (stored in an online repository) to guide readers through the numerical check of most analytical results.
Download or read book Matrix Algebra written by James E. Gentle and published by Springer Science & Business Media. This book was released on 2007-07-27 with total page 536 pages. Available in PDF, EPUB and Kindle. Book excerpt: Matrix algebra is one of the most important areas of mathematics for data analysis and for statistical theory. This much-needed work presents the relevant aspects of the theory of matrix algebra for applications in statistics. It moves on to consider the various types of matrices encountered in statistics, such as projection matrices and positive definite matrices, and describes the special properties of those matrices. Finally, it covers numerical linear algebra, beginning with a discussion of the basics of numerical computations, and following up with accurate and efficient algorithms for factoring matrices, solving linear systems of equations, and extracting eigenvalues and eigenvectors.