Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Theoretical Foundations Of Medical Physics
Download Theoretical Foundations Of Medical Physics full books in PDF, epub, and Kindle. Read online Theoretical Foundations Of Medical Physics ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis Theoretical Foundations of Medical Physics: Mathematics for the basic sciences and clinical research by : Willem Klip
Download or read book Theoretical Foundations of Medical Physics: Mathematics for the basic sciences and clinical research written by Willem Klip and published by . This book was released on 1969 with total page 456 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis Handbook of Radiotherapy Physics by : P Mayles
Download or read book Handbook of Radiotherapy Physics written by P Mayles and published by CRC Press. This book was released on 2007-06-12 with total page 1472 pages. Available in PDF, EPUB and Kindle. Book excerpt: From background physics and biological models to the latest imaging and treatment modalities, the Handbook of Radiotherapy Physics: Theory and Practice covers all theoretical and practical aspects of radiotherapy physics. In this comprehensive reference, each part focuses on a major area of radiotherapy, beginning with an introduction by the
Book Synopsis Foundations of Potential Theory by : Oliver Dimon Kellogg
Download or read book Foundations of Potential Theory written by Oliver Dimon Kellogg and published by Courier Corporation. This book was released on 1953-01-01 with total page 404 pages. Available in PDF, EPUB and Kindle. Book excerpt: Introduction to fundamentals of potential functions covers the force of gravity, fields of force, potentials, harmonic functions, electric images and Green's function, sequences of harmonic functions, fundamental existence theorems, the logarithmic potential, and much more. Detailed proofs rigorously worked out. 1929 edition.
Book Synopsis Physics of the Human Body by : Irving P. Herman
Download or read book Physics of the Human Body written by Irving P. Herman and published by Springer. This book was released on 2016-01-09 with total page 963 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book comprehensively addresses the physics and engineering aspects of human physiology by using and building on first-year college physics and mathematics. Topics include the mechanics of the static body and the body in motion, the mechanical properties of the body, muscles in the body, the energetics of body metabolism, fluid flow in the cardiovascular and respiratory systems, the acoustics of sound waves in speaking and hearing, vision and the optics of the eye, the electrical properties of the body, and the basic engineering principles of feedback and control in regulating all aspects of function. The goal of this text is to clearly explain the physics issues concerning the human body, in part by developing and then using simple and subsequently more refined models of the macrophysics of the human body. Many chapters include a brief review of the underlying physics. There are problems at the end of each chapter; solutions to selected problems are also provided. This second edition enhances the treatments of the physics of motion, sports, and diseases and disorders, and integrates discussions of these topics as they appear throughout the book. Also, it briefly addresses physical measurements of and in the body, and offers a broader selection of problems, which, as in the first edition, are geared to a range of student levels. This text is geared to undergraduates interested in physics, medical applications of physics, quantitative physiology, medicine, and biomedical engineering.
Book Synopsis Theoretical Foundations of Medical Physics by :
Download or read book Theoretical Foundations of Medical Physics written by and published by . This book was released on 1969 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis Radiation Physics for Medical Physicists by : Ervin B. Podgorsak
Download or read book Radiation Physics for Medical Physicists written by Ervin B. Podgorsak and published by Springer Science & Business Media. This book was released on 2010-02-02 with total page 774 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book summarizes basic knowledge of atomic, nuclear, and radiation physics that professionals need for efficient and safe use of ionizing radiation. Concentrating on the underlying principles of radiation physics, it covers prerequisite knowledge for medical physics courses on the graduate and post-graduate levels, providing the link between elementary physics on the one hand and the intricacies of the medical physics specialties on the other.
Book Synopsis Lectures on Radiation Dosimetry Physics by : Michael Kissick
Download or read book Lectures on Radiation Dosimetry Physics written by Michael Kissick and published by . This book was released on 2016-11 with total page 156 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis Introduction To Modern Physics: Theoretical Foundations by : John Dirk Walecka
Download or read book Introduction To Modern Physics: Theoretical Foundations written by John Dirk Walecka and published by World Scientific Publishing Company. This book was released on 2008-07-10 with total page 496 pages. Available in PDF, EPUB and Kindle. Book excerpt: Our understanding of the physical world was revolutionized in the twentieth century — the era of “modern physics''. This book, aimed at the very best students, presents the foundations and frontiers of today's physics. It focuses on the following topics: quantum mechanics; applications in atomic, nuclear, particle, and condensed-matter physics; special relativity; relativistic quantum mechanics, including the Dirac equation and Feynman diagrams; quantum fields; and general relativity. The aim is to cover these topics in sufficient depth such that things “make sense'' to students and they can achieve an elementary working knowledge of them. Many problems are included, a great number of which take dedicated readers just as far as they want to go in modern physics. Although the book is designed so that one can, in principle, read and follow the text without doing any of the problems, the reader is urged to attempt as many of them as possible. Several appendices help bring the reader up to speed on any additional required mathematics. With very few exceptions, the reader should then find the text, together with the appendices and problems, to be self-contained.
Book Synopsis Advanced Modern Physics: Theoretical Foundations by : John Dirk Walecka
Download or read book Advanced Modern Physics: Theoretical Foundations written by John Dirk Walecka and published by World Scientific Publishing Company. This book was released on 2010-03-22 with total page 498 pages. Available in PDF, EPUB and Kindle. Book excerpt: Our understanding of the physical world was revolutionized in the twentieth century — the era of “modern physics”. This book, aimed at the very best students, extends the coverage of the theoretical groundwork of today's physics presented in the previous volume: Introduction to Modern Physics: Theoretical Foundations (Vol. I). Typically, students have to wade through several courses to see many of these topics. The goal is to give them some idea of where they are going, and how things fit together, as they go along.The present book focuses on the following topics: reformulation of quantum mechanics, angular momentum, scattering theory, lagrangian field theory, symmetries, Feynman rules, quantum electrodynamics, including higher-order contributions, path integrals, and canonical transformations for quantum systems. Many problems are included that enhance and extend the coverage. The book assumes a mastery of the material in Vol. I, and the continued development of mathematical skills, including multivariable calculus and linear algebra. Several appendices provide important details, and any additional required mathematics. The reader should then find the text, together with the appendices and problems, to be self-contained. The aim is to cover the framework of modern theoretical physics in sufficient depth that things “make sense” to students, and, when finished, the reader should have an elementary working knowledge in the principal areas of theoretical physics of the twentieth century.
Book Synopsis Handbook of Radiotherapy Physics by : Philip Mayles
Download or read book Handbook of Radiotherapy Physics written by Philip Mayles and published by CRC Press. This book was released on 2021-12-30 with total page 1463 pages. Available in PDF, EPUB and Kindle. Book excerpt: From the essential background physics and radiobiology to the latest imaging and treatment modalities, the updated second edition of Handbook of Radiotherapy Physics: Theory & Practice covers all aspects of the subject. In Volume 1, Part A includes the Interaction of Radiation with Matter (charged particles and photons) and the Fundamentals of Dosimetry with an extensive section on small-field physics. Part B covers Radiobiology with increased emphasis on hypofractionation. Part C describes Equipment for Imaging and Therapy including MR-guided linear accelerators. Part D on Dose Measurement includes chapters on ionisation chambers, solid-state detectors, film and gels, as well as a detailed description and explanation of Codes of Practice for Reference Dose Determination including detector correction factors in small fields. Part E describes the properties of Clinical (external) Beams. The various methods (or ‘algorithms’) for Computing Doses in Patients irradiated by photon, electron and proton beams are described in Part F with increased emphasis on Monte-Carlo-based and grid-based deterministic algorithms. In Volume 2, Part G covers all aspects of Treatment Planning including CT-, MR- and Radionuclide-based patient imaging, Intensity-Modulated Photon Beams, Electron and Proton Beams, Stereotactic and Total Body Irradiation and the use of the dosimetric and radiobiological metrics TCP and NTCP for plan evaluation and optimisation. Quality Assurance fundamentals with application to equipment and processes are covered in Part H. Radionuclides, equipment and methods for Brachytherapy and Targeted Molecular Therapy are covered in Parts I and J, respectively. Finally, Part K is devoted to Radiation Protection of the public, staff and patients. Extensive tables of Physical Constants, Photon, Electron and Proton Interaction data, and typical Photon Beam and Radionuclide data are given in Part L. Edited by recognised authorities in the field, with individual chapters written by renowned specialists, this second edition of Handbook of Radiotherapy Physics provides the essential up-to-date theoretical and practical knowledge to deliver safe and effective radiotherapy. It will be of interest to clinical and research medical physicists, radiation oncologists, radiation technologists, PhD and Master’s students.
Book Synopsis Theoretical Mechanics of Particles and Continua by : Alexander L. Fetter
Download or read book Theoretical Mechanics of Particles and Continua written by Alexander L. Fetter and published by Courier Corporation. This book was released on 2003-12-16 with total page 596 pages. Available in PDF, EPUB and Kindle. Book excerpt: This two-part text fills what has often been a void in the first-year graduate physics curriculum. Through its examination of particles and continua, it supplies a lucid and self-contained account of classical mechanics — which in turn provides a natural framework for introducing many of the advanced mathematical concepts in physics. The text opens with Newton's laws of motion and systematically develops the dynamics of classical particles, with chapters on basic principles, rotating coordinate systems, lagrangian formalism, small oscillations, dynamics of rigid bodies, and hamiltonian formalism, including a brief discussion of the transition to quantum mechanics. This part of the book also considers examples of the limiting behavior of many particles, facilitating the eventual transition to a continuous medium. The second part deals with classical continua, including chapters on string membranes, sound waves, surface waves on nonviscous fluids, heat conduction, viscous fluids, and elastic media. Each of these self-contained chapters provides the relevant physical background and develops the appropriate mathematical techniques, and problems of varying difficulty appear throughout the text.
Book Synopsis Theoretical Foundations of Medical Physics by :
Download or read book Theoretical Foundations of Medical Physics written by and published by . This book was released on 1969 with total page 853 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Theoretical Physics written by Georg Joos and published by Courier Corporation. This book was released on 2013-04-22 with total page 930 pages. Available in PDF, EPUB and Kindle. Book excerpt: Classic treatise covers mathematical topics needed by theoretical and experimental physicists (vector analysis, calculus of variations, etc.), followed by coverage of mechanics, electromagnetic theory, thermodynamics, quantum mechanics, and nuclear physics.
Download or read book Medical Physics Data Book written by and published by . This book was released on 1982 with total page 132 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis Treatment Planning of High Dose-Rate Brachytherapy - Mathematical Modelling and Optimization by : Björn Morén
Download or read book Treatment Planning of High Dose-Rate Brachytherapy - Mathematical Modelling and Optimization written by Björn Morén and published by Linköping University Electronic Press. This book was released on 2021-01-12 with total page 53 pages. Available in PDF, EPUB and Kindle. Book excerpt: Cancer is a widespread class of diseases that each year affects millions of people. It is mostly treated with chemotherapy, surgery, radiation therapy, or combinations thereof. High doserate (HDR) brachytherapy (BT) is one modality of radiation therapy, which is used to treat for example prostate cancer and gynecologic cancer. In BT, catheters (i.e., hollow needles) or applicators are used to place a single, small, but highly radioactive source of ionizing radiation close to or within a tumour, at dwell positions. An emerging technique for HDR BT treatment is intensity modulated brachytherapy (IMBT), in which static or dynamic shields are used to further shape the dose distribution, by hindering the radiation in certain directions. The topic of this thesis is the application of mathematical optimization to model and solve the treatment planning problem. The treatment planning includes decisions on catheter placement, that is, how many catheters to use and where to place them, as well as decisions for dwell times. Our focus is on the latter decisions. The primary treatment goals are to give the tumour a sufficiently high radiation dose while limiting the dose to the surrounding healthy organs, to avoid severe side effects. Because these aims are typically in conflict, optimization models of the treatment planning problem are inherently multiobjective. Compared to manual treatment planning, there are several advantages of using mathematical optimization for treatment planning. First, the optimization of treatment plans requires less time, compared to the time-consuming manual planning. Secondly, treatment plan quality can be improved by using optimization models and algorithms. Finally, with the use of sophisticated optimization models and algorithms the requirements of experience and skill level for the planners are lower. The use of optimization for treatment planning of IMBT is especially important because the degrees of freedom are too many for manual planning. The contributions of this thesis include the study of properties of treatment planning models, suggestions for extensions and improvements of proposed models, and the development of new optimization models that take clinically relevant, but uncustomary aspects, into account in the treatment planning. A common theme is the modelling of constraints on dosimetric indices, each of which is a restriction on the portion of a volume that receives at least a specified dose, or on the lowest dose that is received by a portion of a volume. Modelling dosimetric indices explicitly yields mixed-integer programs which are computationally demanding to solve. We have therefore investigated approximations of dosimetric indices, for example using smooth non-linear functions or convex functions. Contributions of this thesis are also a literature review of proposed treatment planning models for HDR BT, including mathematical analyses and comparisons of models, and a study of treatment planning for IMBT, which shows how robust optimization can be used to mitigate the risks from rotational errors in the shield placement. Cancer är en grupp av sjukdomar som varje år drabbar miljontals människor. De vanligaste behandlingsformerna är cellgifter, kirurgi, strålbehandling eller en kombination av dessa. I denna avhandling studeras högdosrat brachyterapi (HDR BT), vilket är en form av strålbehandling som till exempel används vid behandling av prostatacancer och gynekologisk cancer. Vid brachyterapibehandling används ihåliga nålar eller applikatorer för att placera en millimeterstor strålkälla antingen inuti eller intill en tumör. I varje nål finns det ett antal så kallade dröjpositioner där strålkällan kan stanna en viss tid för att bestråla den omkringliggande vävnaden, i alla riktningar. Genom att välja lämpliga tider för dröjpositionerna kan dosfördelningen formas efter patientens anatomi. Utöver HDR BT studeras också den nya tekniken intensitetsmodulerad brachyterapi (IMBT) vilket är en variation på HDR BT där skärmning används för att minska strålningen i vissa riktningar vilket gör det möjligt att forma dosfördelningen bättre. Planeringen av en behandling med HDR BT omfattar hur många nålar som ska användas, var de ska placeras samt hur länge strålkällan ska stanna i de olika dröjpositionerna. För HDR BT kan dessa vara flera hundra stycken medan det för IMBT snarare handlar om tusentals möjliga kombinationer av dröjpositioner och inställningar av skärmarna. Planeringen resulterar i en dosplan som beskriver hur hög stråldos som tumören och intilliggande frisk vävnad och riskorgan utsätts för. Dosplaneringen kan formuleras som ett matematiskt optimeringsproblem vilket är ämnet för avhandlingen. De övergripande målsättningarna för behandlingen är att ge en tillräckligt hög stråldos till tumören, för att döda alla cancerceller, samt att undvika att bestråla riskorgan eftersom det kan ge allvarliga biverkningar. Då alla målsättningarna inte samtidigt kan uppnås fullt ut så fås optimeringsproblem där flera målsättningar behöver prioriteras mot varandra. Utöver att dosplanen uppfyller kliniska behandlingsriktlinjer så är också tidsaspekten av planeringen viktig eftersom det är vanligt att den görs medan patienten är bedövad eller sövd. Vid utvärdering av en dosplan används dos-volymmått. För en tumör anger ett dosvolymmått hur stor andel av tumören som får en stråldos som är högre än en specificerad nivå. Dos-volymmått utgör en viktig del av målen för dosplaner som tas upp i kliniska behandlingsriktlinjer och ett exempel på ett sådant mål vid behandling av prostatacancer är att 95% av prostatans volym ska få en stråldos som är minst den föreskrivna dosen. Dos-volymmått utläses ur de kliniskt betydelsefulla dos-volym histogrammen som för varje stråldosnivå anger motsvarande volym som erhåller den dosen. En fördel med att använda matematisk optimering för dosplanering är att det kan spara tid jämfört med manuell planering. Med väl utvecklade modeller så finns det också möjlighet att skapa bättre dosplaner, till exempel genom att riskorganen nås av en lägre dos men med bibehållen dos till tumören. Vidare så finns det även fördelar med en process som inte är lika personberoende och som inte kräver erfarenhet i lika stor utsträckning som manuell dosplanering i dagsläget gör. Vid IMBT är det dessutom så många frihetsgrader att manuell planering i stort sett blir omöjligt. I avhandlingen ligger fokus på hur dos-volymmått kan användas och modelleras explicit i optimeringsmodeller, så kallade dos-volymmodeller. Detta omfattar såväl analys av egenskaper hos befintliga modeller, utvidgningar av tidigare använda modeller samt utveckling av nya optimeringsmodeller. Eftersom dos-volymmodeller modelleras som heltalsproblem, vilka är beräkningskrävande att lösa, så är det också viktigt att utveckla algoritmer som kan lösa dem tillräckligt snabbt för klinisk användning. Ett annat mål för modellutvecklingen är att kunna ta hänsyn till fler kriterier som är kliniskt relevanta men som inte ingår i dos-volymmodeller. En sådan kategori av mått är hur dosen är fördelad rumsligt, exempelvis att volymen av sammanhängande områden som får en alldeles för hög dos ska vara liten. Sådana områden går dock inte att undvika helt eftersom det är typiskt för dosplaner för brachyterapi att stråldosen fördelar sig ojämnt, med väldigt höga doser till små volymer precis intill strålkällorna. Vidare studeras hur små fel i inställningarna av skärmningen i IMBT påverkar dosplanens kvalitet och de olika utvärderingsmått som används kliniskt. Robust optimering har använts för att säkerställa att en dosplan tas fram som är robust sett till dessa möjliga fel i hur skärmningen är placerad. Slutligen ges en omfattande översikt över optimeringsmodeller för dosplanering av HDR BT och speciellt hur optimeringsmodellerna hanterar de motstridiga målsättningarna.
Book Synopsis National Library of Medicine Current Catalog by : National Library of Medicine (U.S.)
Download or read book National Library of Medicine Current Catalog written by National Library of Medicine (U.S.) and published by . This book was released on 1970 with total page 752 pages. Available in PDF, EPUB and Kindle. Book excerpt: First multi-year cumulation covers six years: 1965-70.
Book Synopsis Introduction to Physics in Modern Medicine by : Suzanne Amador Kane
Download or read book Introduction to Physics in Modern Medicine written by Suzanne Amador Kane and published by CRC Press. This book was released on 2002-11-28 with total page 358 pages. Available in PDF, EPUB and Kindle. Book excerpt: The medical applications of physics are not typically covered in introductory physics courses. Introduction to Physics in Modern Medicine fills that gap by explaining the physical principles behind technologies such as surgical lasers or computed tomography (CT or CAT) scanners. Each chapter includes a short explanation of the scientific background, making this book highly accessible to those without an advanced knowledge of physics. It is intended for medicine and health studies students who need an elementary background in physics, but it also serves well as a non-mathematical introduction to applied physics for undergraduate students in physics, engineering, and other disciplines.