Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
The Theory Of Jacobi Forms
Download The Theory Of Jacobi Forms full books in PDF, epub, and Kindle. Read online The Theory Of Jacobi Forms ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis The Theory of Jacobi Forms by : Martin Eichler
Download or read book The Theory of Jacobi Forms written by Martin Eichler and published by Springer Science & Business Media. This book was released on 2013-12-14 with total page 156 pages. Available in PDF, EPUB and Kindle. Book excerpt: The functions studied in this monogra9h are a cross between elliptic functions and modular forms in one variable. Specifically, we define a Jacobi form on SL (~) to be a holomorphic function 2 (JC = upper half-plane) satisfying the t\-10 transformation eouations 2Tiimcz· k CT +d a-r +b z) (1) ((cT+d) e cp(T, z) cp CT +d ' CT +d (2) rjl(T, z+h+]l) and having a Four·ier expansion of the form 00 e2Tii(nT +rz) (3) cp(T, z) 2: c(n, r) 2:: rE~ n=O 2 r ~ 4nm Here k and m are natural numbers, called the weight and index of rp, respectively. Note that th e function cp (T, 0) is an ordinary modular formofweight k, whileforfixed T thefunction z-+rjl( -r, z) isa function of the type normally used to embed the elliptic curve ~/~T + ~ into a projective space. If m= 0, then cp is independent of z and the definition reduces to the usual notion of modular forms in one variable. We give three other examples of situations where functions satisfying (1)-(3) arise classically: 1. Theta series. Let Q: ~-+ ~ be a positive definite integer valued quadratic form and B the associated bilinear form.
Book Synopsis Jacobi Forms, Finite Quadratic Modules and Weil Representations over Number Fields by : Hatice Boylan
Download or read book Jacobi Forms, Finite Quadratic Modules and Weil Representations over Number Fields written by Hatice Boylan and published by Springer. This book was released on 2014-12-05 with total page 150 pages. Available in PDF, EPUB and Kindle. Book excerpt: The new theory of Jacobi forms over totally real number fields introduced in this monograph is expected to give further insight into the arithmetic theory of Hilbert modular forms, its L-series, and into elliptic curves over number fields. This work is inspired by the classical theory of Jacobi forms over the rational numbers, which is an indispensable tool in the arithmetic theory of elliptic modular forms, elliptic curves, and in many other disciplines in mathematics and physics. Jacobi forms can be viewed as vector valued modular forms which take values in so-called Weil representations. Accordingly, the first two chapters develop the theory of finite quadratic modules and associated Weil representations over number fields. This part might also be interesting for those who are merely interested in the representation theory of Hilbert modular groups. One of the main applications is the complete classification of Jacobi forms of singular weight over an arbitrary totally real number field.
Book Synopsis Elements of the Representation Theory of the Jacobi Group by : Rolf Berndt
Download or read book Elements of the Representation Theory of the Jacobi Group written by Rolf Berndt and published by Springer Science & Business Media. This book was released on 2012-01-05 with total page 225 pages. Available in PDF, EPUB and Kindle. Book excerpt: Combining algebraic groups and number theory, this volume gathers material from the representation theory of this group for the first time, doing so for both local (Archimedean and non-Archimedean) cases as well as for the global number field case.
Book Synopsis The Moduli Space of Curves by : Robert H. Dijkgraaf
Download or read book The Moduli Space of Curves written by Robert H. Dijkgraaf and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 570 pages. Available in PDF, EPUB and Kindle. Book excerpt: The moduli space Mg of curves of fixed genus g – that is, the algebraic variety that parametrizes all curves of genus g – is one of the most intriguing objects of study in algebraic geometry these days. Its appeal results not only from its beautiful mathematical structure but also from recent developments in theoretical physics, in particular in conformal field theory.
Book Synopsis Harmonic Maass Forms and Mock Modular Forms: Theory and Applications by : Kathrin Bringmann
Download or read book Harmonic Maass Forms and Mock Modular Forms: Theory and Applications written by Kathrin Bringmann and published by American Mathematical Soc.. This book was released on 2017-12-15 with total page 409 pages. Available in PDF, EPUB and Kindle. Book excerpt: Modular forms and Jacobi forms play a central role in many areas of mathematics. Over the last 10–15 years, this theory has been extended to certain non-holomorphic functions, the so-called “harmonic Maass forms”. The first glimpses of this theory appeared in Ramanujan's enigmatic last letter to G. H. Hardy written from his deathbed. Ramanujan discovered functions he called “mock theta functions” which over eighty years later were recognized as pieces of harmonic Maass forms. This book contains the essential features of the theory of harmonic Maass forms and mock modular forms, together with a wide variety of applications to algebraic number theory, combinatorics, elliptic curves, mathematical physics, quantum modular forms, and representation theory.
Book Synopsis The 1-2-3 of Modular Forms by : Jan Hendrik Bruinier
Download or read book The 1-2-3 of Modular Forms written by Jan Hendrik Bruinier and published by Springer Science & Business Media. This book was released on 2008-02-10 with total page 273 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book grew out of three series of lectures given at the summer school on "Modular Forms and their Applications" at the Sophus Lie Conference Center in Nordfjordeid in June 2004. The first series treats the classical one-variable theory of elliptic modular forms. The second series presents the theory of Hilbert modular forms in two variables and Hilbert modular surfaces. The third series gives an introduction to Siegel modular forms and discusses a conjecture by Harder. It also contains Harder's original manuscript with the conjecture. Each part treats a number of beautiful applications.
Book Synopsis Problems in the Theory of Modular Forms by : M. Ram Murty
Download or read book Problems in the Theory of Modular Forms written by M. Ram Murty and published by Springer. This book was released on 2016-11-25 with total page 293 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book introduces the reader to the fascinating world of modular forms through a problem-solving approach. As such, besides researchers, the book can be used by the undergraduate and graduate students for self-instruction. The topics covered include q-series, the modular group, the upper half-plane, modular forms of level one and higher level, the Ramanujan τ-function, the Petersson inner product, Hecke operators, Dirichlet series attached to modular forms and further special topics. It can be viewed as a gentle introduction for a deeper study of the subject. Thus, it is ideal for non-experts seeking an entry into the field.
Download or read book Modular Forms written by Henri Cohen and published by American Mathematical Soc.. This book was released on 2017-08-02 with total page 714 pages. Available in PDF, EPUB and Kindle. Book excerpt: The theory of modular forms is a fundamental tool used in many areas of mathematics and physics. It is also a very concrete and “fun” subject in itself and abounds with an amazing number of surprising identities. This comprehensive textbook, which includes numerous exercises, aims to give a complete picture of the classical aspects of the subject, with an emphasis on explicit formulas. After a number of motivating examples such as elliptic functions and theta functions, the modular group, its subgroups, and general aspects of holomorphic and nonholomorphic modular forms are explained, with an emphasis on explicit examples. The heart of the book is the classical theory developed by Hecke and continued up to the Atkin–Lehner–Li theory of newforms and including the theory of Eisenstein series, Rankin–Selberg theory, and a more general theory of theta series including the Weil representation. The final chapter explores in some detail more general types of modular forms such as half-integral weight, Hilbert, Jacobi, Maass, and Siegel modular forms. Some “gems” of the book are an immediately implementable trace formula for Hecke operators, generalizations of Haberland's formulas for the computation of Petersson inner products, W. Li's little-known theorem on the diagonalization of the full space of modular forms, and explicit algorithms due to the second author for computing Maass forms. This book is essentially self-contained, the necessary tools such as gamma and Bessel functions, Bernoulli numbers, and so on being given in a separate chapter.
Book Synopsis Modular Forms and Related Topics in Number Theory by : B. Ramakrishnan
Download or read book Modular Forms and Related Topics in Number Theory written by B. Ramakrishnan and published by Springer Nature. This book was released on 2020-11-24 with total page 240 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book collects the papers presented at the Conference on Number Theory, held at the Kerala School of Mathematics, Kozhikode, Kerala, India, from December 10–14, 2018. The conference aimed at bringing the active number theorists and researchers in automorphic forms and allied areas to demonstrate their current research works. This book benefits young research scholars, postdoctoral fellows, and young faculty members working in these areas of research.
Book Synopsis Some Applications of Modular Forms by : Peter Sarnak
Download or read book Some Applications of Modular Forms written by Peter Sarnak and published by Cambridge University Press. This book was released on 1990-11-15 with total page 124 pages. Available in PDF, EPUB and Kindle. Book excerpt: The theory of modular forms and especially the so-called 'Ramanujan Conjectures' have been applied to resolve problems in combinatorics, computer science, analysis and number theory. This tract, based on the Wittemore Lectures given at Yale University, is concerned with describing some of these applications. In order to keep the presentation reasonably self-contained, Professor Sarnak begins by developing the necessary background material in modular forms. He then considers the solution of three problems: the Ruziewicz problem concerning finitely additive rotationally invariant measures on the sphere; the explicit construction of highly connected but sparse graphs: 'expander graphs' and 'Ramanujan graphs'; and the Linnik problem concerning the distribution of integers that represent a given large integer as a sum of three squares. These applications are carried out in detail. The book therefore should be accessible to a wide audience of graduate students and researchers in mathematics and computer science.
Book Synopsis The Theory of Jacobi Forms by : Martin Eichler
Download or read book The Theory of Jacobi Forms written by Martin Eichler and published by . This book was released on 2014-09-01 with total page 160 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis Jacobi Operators and Completely Integrable Nonlinear Lattices by : Gerald Teschl
Download or read book Jacobi Operators and Completely Integrable Nonlinear Lattices written by Gerald Teschl and published by American Mathematical Soc.. This book was released on 2000 with total page 373 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume serves as an introduction and reference source on spectral and inverse theory of Jacobi operators and applications of these theories to the Toda and Kac-van Moerbeke hierarchy.
Book Synopsis Introductory Lectures on Siegel Modular Forms by : Helmut Klingen
Download or read book Introductory Lectures on Siegel Modular Forms written by Helmut Klingen and published by Cambridge University Press. This book was released on 1990-02-23 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: From their inception, Siegel modular forms have been studied extensively because of their significance in both automorphic functions in several complex variables and number theory. The comprehensive theory of automorphic forms to subgroups of algebraic groups and the arithmetical theory of modular forms illustrate these two aspects in an illuminating manner. The author's aim is to present a straightforward and easily accessible survey of the main ideas of the theory at an elementary level, providing a sound basis from which the reader can study advanced works and undertake original research. This book is based on lectures given by the author for a number of years and is intended for a one-semester graduate course, though it can also be used profitably for self-study. The only prerequisites are a basic knowledge of algebra, number theory and complex analysis.
Book Synopsis Automorphic Forms on GL (3,TR) by : D. Bump
Download or read book Automorphic Forms on GL (3,TR) written by D. Bump and published by Springer. This book was released on 2006-12-08 with total page 196 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis L-Functions and Automorphic Forms by : Jan Hendrik Bruinier
Download or read book L-Functions and Automorphic Forms written by Jan Hendrik Bruinier and published by Springer. This book was released on 2018-02-22 with total page 367 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents a collection of carefully refereed research articles and lecture notes stemming from the Conference "Automorphic Forms and L-Functions", held at the University of Heidelberg in 2016. The theory of automorphic forms and their associated L-functions is one of the central research areas in modern number theory, linking number theory, arithmetic geometry, representation theory, and complex analysis in many profound ways. The 19 papers cover a wide range of topics within the scope of the conference, including automorphic L-functions and their special values, p-adic modular forms, Eisenstein series, Borcherds products, automorphic periods, and many more.
Book Synopsis Codes And Modular Forms: A Dictionary by : Minjia Shi
Download or read book Codes And Modular Forms: A Dictionary written by Minjia Shi and published by World Scientific. This book was released on 2019-11-20 with total page 232 pages. Available in PDF, EPUB and Kindle. Book excerpt: There are connections between invariant theory and modular forms since the times of Felix Klein, in the 19th century, connections between codes and lattices since the 1960's. The aim of the book is to explore the interplay between codes and modular forms. Here modular form is understood in a wide sense (Jacobi forms, Siegel forms, Hilbert forms). Codes comprises not only linear spaces over finite fields but modules over some commutative rings. The connection between codes over finite fields and lattices has been well documented since the 1970s. Due to an avalanche of results on codes over rings since the 1990's there is a need for an update at book level.
Book Synopsis Topological Modular Forms by : Christopher L. Douglas
Download or read book Topological Modular Forms written by Christopher L. Douglas and published by American Mathematical Soc.. This book was released on 2014-12-04 with total page 353 pages. Available in PDF, EPUB and Kindle. Book excerpt: The theory of topological modular forms is an intricate blend of classical algebraic modular forms and stable homotopy groups of spheres. The construction of this theory combines an algebro-geometric perspective on elliptic curves over finite fields with techniques from algebraic topology, particularly stable homotopy theory. It has applications to and connections with manifold topology, number theory, and string theory. This book provides a careful, accessible introduction to topological modular forms. After a brief history and an extended overview of the subject, the book proper commences with an exposition of classical aspects of elliptic cohomology, including background material on elliptic curves and modular forms, a description of the moduli stack of elliptic curves, an explanation of the exact functor theorem for constructing cohomology theories, and an exploration of sheaves in stable homotopy theory. There follows a treatment of more specialized topics, including localization of spectra, the deformation theory of formal groups, and Goerss-Hopkins obstruction theory for multiplicative structures on spectra. The book then proceeds to more advanced material, including discussions of the string orientation, the sheaf of spectra on the moduli stack of elliptic curves, the homotopy of topological modular forms, and an extensive account of the construction of the spectrum of topological modular forms. The book concludes with the three original, pioneering and enormously influential manuscripts on the subject, by Hopkins, Miller, and Mahowald.