The Real Projective Plane

Download The Real Projective Plane PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1461227348
Total Pages : 236 pages
Book Rating : 4.4/5 (612 download)

DOWNLOAD NOW!


Book Synopsis The Real Projective Plane by : H.S.M. Coxeter

Download or read book The Real Projective Plane written by H.S.M. Coxeter and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 236 pages. Available in PDF, EPUB and Kindle. Book excerpt: Along with many small improvements, this revised edition contains van Yzeren's new proof of Pascal's theorem (§1.7) and, in Chapter 2, an improved treatment of order and sense. The Sylvester-Gallai theorem, instead of being introduced as a curiosity, is now used as an essential step in the theory of harmonic separation (§3.34). This makes the logi cal development self-contained: the footnotes involving the References (pp. 214-216) are for comparison with earlier treatments, and to give credit where it is due, not to fill gaps in the argument. H.S.M.C. November 1992 v Preface to the Second Edition Why should one study the real plane? To this question, put by those who advocate the complex plane, or geometry over a general field, I would reply that the real plane is an easy first step. Most of the prop erties are closely analogous, and the real field has the advantage of intuitive accessibility. Moreover, real geometry is exactly what is needed for the projective approach to non· Euclidean geometry. Instead of introducing the affine and Euclidean metrics as in Chapters 8 and 9, we could just as well take the locus of 'points at infinity' to be a conic, or replace the absolute involution by an absolute polarity.

The Real Projective Plane

Download The Real Projective Plane PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 9780387978895
Total Pages : 248 pages
Book Rating : 4.9/5 (788 download)

DOWNLOAD NOW!


Book Synopsis The Real Projective Plane by : H.S.M. Coxeter

Download or read book The Real Projective Plane written by H.S.M. Coxeter and published by Springer Science & Business Media. This book was released on 1992-12-23 with total page 248 pages. Available in PDF, EPUB and Kindle. Book excerpt: Along with many small improvements, this revised edition contains van Yzeren's new proof of Pascal's theorem (§1.7) and, in Chapter 2, an improved treatment of order and sense. The Sylvester-Gallai theorem, instead of being introduced as a curiosity, is now used as an essential step in the theory of harmonic separation (§3.34). This makes the logi cal development self-contained: the footnotes involving the References (pp. 214-216) are for comparison with earlier treatments, and to give credit where it is due, not to fill gaps in the argument. H.S.M.C. November 1992 v Preface to the Second Edition Why should one study the real plane? To this question, put by those who advocate the complex plane, or geometry over a general field, I would reply that the real plane is an easy first step. Most of the prop erties are closely analogous, and the real field has the advantage of intuitive accessibility. Moreover, real geometry is exactly what is needed for the projective approach to non· Euclidean geometry. Instead of introducing the affine and Euclidean metrics as in Chapters 8 and 9, we could just as well take the locus of 'points at infinity' to be a conic, or replace the absolute involution by an absolute polarity.

Mathematical models

Download Mathematical models PDF Online Free

Author :
Publisher : Informatica International, Incorporated
ISBN 13 :
Total Pages : 118 pages
Book Rating : 4.3/5 (91 download)

DOWNLOAD NOW!


Book Synopsis Mathematical models by : Gerd Fischer

Download or read book Mathematical models written by Gerd Fischer and published by Informatica International, Incorporated. This book was released on 1986 with total page 118 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Perspectives on Projective Geometry

Download Perspectives on Projective Geometry PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 3642172865
Total Pages : 573 pages
Book Rating : 4.6/5 (421 download)

DOWNLOAD NOW!


Book Synopsis Perspectives on Projective Geometry by : Jürgen Richter-Gebert

Download or read book Perspectives on Projective Geometry written by Jürgen Richter-Gebert and published by Springer Science & Business Media. This book was released on 2011-02-04 with total page 573 pages. Available in PDF, EPUB and Kindle. Book excerpt: Projective geometry is one of the most fundamental and at the same time most beautiful branches of geometry. It can be considered the common foundation of many other geometric disciplines like Euclidean geometry, hyperbolic and elliptic geometry or even relativistic space-time geometry. This book offers a comprehensive introduction to this fascinating field and its applications. In particular, it explains how metric concepts may be best understood in projective terms. One of the major themes that appears throughout this book is the beauty of the interplay between geometry, algebra and combinatorics. This book can especially be used as a guide that explains how geometric objects and operations may be most elegantly expressed in algebraic terms, making it a valuable resource for mathematicians, as well as for computer scientists and physicists. The book is based on the author’s experience in implementing geometric software and includes hundreds of high-quality illustrations.

Introduction to Projective Geometry

Download Introduction to Projective Geometry PDF Online Free

Author :
Publisher : Courier Corporation
ISBN 13 : 0486141705
Total Pages : 578 pages
Book Rating : 4.4/5 (861 download)

DOWNLOAD NOW!


Book Synopsis Introduction to Projective Geometry by : C. R. Wylie

Download or read book Introduction to Projective Geometry written by C. R. Wylie and published by Courier Corporation. This book was released on 2011-09-12 with total page 578 pages. Available in PDF, EPUB and Kindle. Book excerpt: This lucid introductory text offers both an analytic and an axiomatic approach to plane projective geometry. The analytic treatment builds and expands upon students' familiarity with elementary plane analytic geometry and provides a well-motivated approach to projective geometry. Subsequent chapters explore Euclidean and non-Euclidean geometry as specializations of the projective plane, revealing the existence of an infinite number of geometries, each Euclidean in nature but characterized by a different set of distance- and angle-measurement formulas. Outstanding pedagogical features include worked-through examples, introductions and summaries for each topic, and numerous theorems, proofs, and exercises that reinforce each chapter's precepts. Two helpful indexes conclude the text, along with answers to all odd-numbered exercises. In addition to its value to undergraduate students of mathematics, computer science, and secondary mathematics education, this volume provides an excellent reference for computer science professionals.

Projective Geometry

Download Projective Geometry PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 9780521483643
Total Pages : 272 pages
Book Rating : 4.4/5 (836 download)

DOWNLOAD NOW!


Book Synopsis Projective Geometry by : Albrecht Beutelspacher

Download or read book Projective Geometry written by Albrecht Beutelspacher and published by Cambridge University Press. This book was released on 1998-01-29 with total page 272 pages. Available in PDF, EPUB and Kindle. Book excerpt: Projective geometry is not only a jewel of mathematics, but has also many applications in modern information and communication science. This book presents the foundations of classical projective and affine geometry as well as its important applications in coding theory and cryptography. It also could serve as a first acquaintance with diagram geometry. Written in clear and contemporary language with an entertaining style and around 200 exercises, examples and hints, this book is ideally suited to be used as a textbook for study in the classroom or on its own.

Projective Geometry

Download Projective Geometry PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 9780387406237
Total Pages : 180 pages
Book Rating : 4.4/5 (62 download)

DOWNLOAD NOW!


Book Synopsis Projective Geometry by : H.S.M. Coxeter

Download or read book Projective Geometry written by H.S.M. Coxeter and published by Springer Science & Business Media. This book was released on 2003-10-09 with total page 180 pages. Available in PDF, EPUB and Kindle. Book excerpt: In Euclidean geometry, constructions are made with ruler and compass. Projective geometry is simpler: its constructions require only a ruler. In projective geometry one never measures anything, instead, one relates one set of points to another by a projectivity. The first two chapters of this book introduce the important concepts of the subject and provide the logical foundations. The third and fourth chapters introduce the famous theorems of Desargues and Pappus. Chapters 5 and 6 make use of projectivities on a line and plane, respectively. The next three chapters develop a self-contained account of von Staudt's approach to the theory of conics. The modern approach used in that development is exploited in Chapter 10, which deals with the simplest finite geometry that is rich enough to illustrate all the theorems nontrivially. The concluding chapters show the connections among projective, Euclidean, and analytic geometry.

Projective Geometry

Download Projective Geometry PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3319428241
Total Pages : 275 pages
Book Rating : 4.3/5 (194 download)

DOWNLOAD NOW!


Book Synopsis Projective Geometry by : Elisabetta Fortuna

Download or read book Projective Geometry written by Elisabetta Fortuna and published by Springer. This book was released on 2016-12-17 with total page 275 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book starts with a concise but rigorous overview of the basic notions of projective geometry, using straightforward and modern language. The goal is not only to establish the notation and terminology used, but also to offer the reader a quick survey of the subject matter. In the second part, the book presents more than 200 solved problems, for many of which several alternative solutions are provided. The level of difficulty of the exercises varies considerably: they range from computations to harder problems of a more theoretical nature, up to some actual complements of the theory. The structure of the text allows the reader to use the solutions of the exercises both to master the basic notions and techniques and to further their knowledge of the subject, thus learning some classical results not covered in the first part of the book. The book addresses the needs of undergraduate and graduate students in the theoretical and applied sciences, and will especially benefit those readers with a solid grasp of elementary Linear Algebra.

Modern Projective Geometry

Download Modern Projective Geometry PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 9401595909
Total Pages : 370 pages
Book Rating : 4.4/5 (15 download)

DOWNLOAD NOW!


Book Synopsis Modern Projective Geometry by : Claude-Alain Faure

Download or read book Modern Projective Geometry written by Claude-Alain Faure and published by Springer Science & Business Media. This book was released on 2013-04-18 with total page 370 pages. Available in PDF, EPUB and Kindle. Book excerpt: This monograph develops projective geometries and provides a systematic treatment of morphisms. It introduces a new fundamental theorem and its applications describing morphisms of projective geometries in homogeneous coordinates by semilinear maps. Other topics treated include three equivalent definitions of projective geometries and their correspondence with certain lattices; quotients of projective geometries and isomorphism theorems; and recent results in dimension theory.

Projective Geometry

Download Projective Geometry PDF Online Free

Author :
Publisher : Courier Corporation
ISBN 13 : 0486154890
Total Pages : 148 pages
Book Rating : 4.4/5 (861 download)

DOWNLOAD NOW!


Book Synopsis Projective Geometry by : T. Ewan Faulkner

Download or read book Projective Geometry written by T. Ewan Faulkner and published by Courier Corporation. This book was released on 2013-02-20 with total page 148 pages. Available in PDF, EPUB and Kindle. Book excerpt: Highlighted by numerous examples, this book explores methods of the projective geometry of the plane. Examines the conic, the general equation of the 2nd degree, and the relationship between Euclidean and projective geometry. 1960 edition.

Euler's Gem

Download Euler's Gem PDF Online Free

Author :
Publisher : Princeton University Press
ISBN 13 : 0691191999
Total Pages : 336 pages
Book Rating : 4.6/5 (911 download)

DOWNLOAD NOW!


Book Synopsis Euler's Gem by : David S. Richeson

Download or read book Euler's Gem written by David S. Richeson and published by Princeton University Press. This book was released on 2019-07-23 with total page 336 pages. Available in PDF, EPUB and Kindle. Book excerpt: How a simple equation reshaped mathematics Leonhard Euler’s polyhedron formula describes the structure of many objects—from soccer balls and gemstones to Buckminster Fuller’s buildings and giant all-carbon molecules. Yet Euler’s theorem is so simple it can be explained to a child. From ancient Greek geometry to today’s cutting-edge research, Euler’s Gem celebrates the discovery of Euler’s beloved polyhedron formula and its far-reaching impact on topology, the study of shapes. Using wonderful examples and numerous illustrations, David Richeson presents this mathematical idea’s many elegant and unexpected applications, such as showing why there is always some windless spot on earth, how to measure the acreage of a tree farm by counting trees, and how many crayons are needed to color any map. Filled with a who’s who of brilliant mathematicians who questioned, refined, and contributed to a remarkable theorem’s development, Euler’s Gem will fascinate every mathematics enthusiast. This paperback edition contains a new preface by the author.

Pencils of Cubics and Algebraic Curves in the Real Projective Plane

Download Pencils of Cubics and Algebraic Curves in the Real Projective Plane PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 0429838255
Total Pages : 257 pages
Book Rating : 4.4/5 (298 download)

DOWNLOAD NOW!


Book Synopsis Pencils of Cubics and Algebraic Curves in the Real Projective Plane by : Séverine Fiedler - Le Touzé

Download or read book Pencils of Cubics and Algebraic Curves in the Real Projective Plane written by Séverine Fiedler - Le Touzé and published by CRC Press. This book was released on 2018-12-07 with total page 257 pages. Available in PDF, EPUB and Kindle. Book excerpt: Pencils of Cubics and Algebraic Curves in the Real Projective Plane thoroughly examines the combinatorial configurations of n generic points in RP2. Especially how it is the data describing the mutual position of each point with respect to lines and conics passing through others. The first section in this book answers questions such as, can one count the combinatorial configurations up to the action of the symmetric group? How are they pairwise connected via almost generic configurations? These questions are addressed using rational cubics and pencils of cubics for n = 6 and 7. The book’s second section deals with configurations of eight points in the convex position. Both the combinatorial configurations and combinatorial pencils are classified up to the action of the dihedral group D8. Finally, the third section contains plentiful applications and results around Hilbert’s sixteenth problem. The author meticulously wrote this book based upon years of research devoted to the topic. The book is particularly useful for researchers and graduate students interested in topology, algebraic geometry and combinatorics. Features: Examines how the shape of pencils depends on the corresponding configurations of points Includes topology of real algebraic curves Contains numerous applications and results around Hilbert’s sixteenth problem About the Author: Séverine Fiedler-le Touzé has published several papers on this topic and has been invited to present at many conferences. She holds a Ph.D. from University Rennes1 and was a post-doc at the Mathematical Sciences Research Institute in Berkeley, California.

Tales of Impossibility

Download Tales of Impossibility PDF Online Free

Author :
Publisher : Princeton University Press
ISBN 13 : 0691218722
Total Pages : 450 pages
Book Rating : 4.6/5 (912 download)

DOWNLOAD NOW!


Book Synopsis Tales of Impossibility by : David S. Richeson

Download or read book Tales of Impossibility written by David S. Richeson and published by Princeton University Press. This book was released on 2021-11-02 with total page 450 pages. Available in PDF, EPUB and Kindle. Book excerpt: A comprehensive look at four of the most famous problems in mathematics Tales of Impossibility recounts the intriguing story of the renowned problems of antiquity, four of the most famous and studied questions in the history of mathematics. First posed by the ancient Greeks, these compass and straightedge problems—squaring the circle, trisecting an angle, doubling the cube, and inscribing regular polygons in a circle—have served as ever-present muses for mathematicians for more than two millennia. David Richeson follows the trail of these problems to show that ultimately their proofs—which demonstrated the impossibility of solving them using only a compass and straightedge—depended on and resulted in the growth of mathematics. Richeson investigates how celebrated luminaries, including Euclid, Archimedes, Viète, Descartes, Newton, and Gauss, labored to understand these problems and how many major mathematical discoveries were related to their explorations. Although the problems were based in geometry, their resolutions were not, and had to wait until the nineteenth century, when mathematicians had developed the theory of real and complex numbers, analytic geometry, algebra, and calculus. Pierre Wantzel, a little-known mathematician, and Ferdinand von Lindemann, through his work on pi, finally determined the problems were impossible to solve. Along the way, Richeson provides entertaining anecdotes connected to the problems, such as how the Indiana state legislature passed a bill setting an incorrect value for pi and how Leonardo da Vinci made elegant contributions in his own study of these problems. Taking readers from the classical period to the present, Tales of Impossibility chronicles how four unsolvable problems have captivated mathematical thinking for centuries.

Algebraic Curves and Riemann Surfaces

Download Algebraic Curves and Riemann Surfaces PDF Online Free

Author :
Publisher : American Mathematical Soc.
ISBN 13 : 0821802682
Total Pages : 414 pages
Book Rating : 4.8/5 (218 download)

DOWNLOAD NOW!


Book Synopsis Algebraic Curves and Riemann Surfaces by : Rick Miranda

Download or read book Algebraic Curves and Riemann Surfaces written by Rick Miranda and published by American Mathematical Soc.. This book was released on 1995 with total page 414 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this book, Miranda takes the approach that algebraic curves are best encountered for the first time over the complex numbers, where the reader's classical intuition about surfaces, integration, and other concepts can be brought into play. Therefore, many examples of algebraic curves are presented in the first chapters. In this way, the book begins as a primer on Riemann surfaces, with complex charts and meromorphic functions taking centre stage. But the main examples come fromprojective curves, and slowly but surely the text moves toward the algebraic category. Proofs of the Riemann-Roch and Serre Dualtiy Theorems are presented in an algebraic manner, via an adaptation of the adelic proof, expressed completely in terms of solving a Mittag-Leffler problem. Sheaves andcohomology are introduced as a unifying device in the later chapters, so that their utility and naturalness are immediately obvious. Requiring a background of one term of complex variable theory and a year of abstract algebra, this is an excellent graduate textbook for a second-term course in complex variables or a year-long course in algebraic geometry.

The Four Pillars of Geometry

Download The Four Pillars of Geometry PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 0387255303
Total Pages : 240 pages
Book Rating : 4.3/5 (872 download)

DOWNLOAD NOW!


Book Synopsis The Four Pillars of Geometry by : John Stillwell

Download or read book The Four Pillars of Geometry written by John Stillwell and published by Springer Science & Business Media. This book was released on 2005-08-09 with total page 240 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is unique in that it looks at geometry from 4 different viewpoints - Euclid-style axioms, linear algebra, projective geometry, and groups and their invariants Approach makes the subject accessible to readers of all mathematical tastes, from the visual to the algebraic Abundantly supplemented with figures and exercises

An Introduction to 3D Computer Vision Techniques and Algorithms

Download An Introduction to 3D Computer Vision Techniques and Algorithms PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 1119964474
Total Pages : 485 pages
Book Rating : 4.1/5 (199 download)

DOWNLOAD NOW!


Book Synopsis An Introduction to 3D Computer Vision Techniques and Algorithms by : Boguslaw Cyganek

Download or read book An Introduction to 3D Computer Vision Techniques and Algorithms written by Boguslaw Cyganek and published by John Wiley & Sons. This book was released on 2011-08-10 with total page 485 pages. Available in PDF, EPUB and Kindle. Book excerpt: Computer vision encompasses the construction of integrated vision systems and the application of vision to problems of real-world importance. The process of creating 3D models is still rather difficult, requiring mechanical measurement of the camera positions or manual alignment of partial 3D views of a scene. However using algorithms, it is possible to take a collection of stereo-pair images of a scene and then automatically produce a photo-realistic, geometrically accurate digital 3D model. This book provides a comprehensive introduction to the methods, theories and algorithms of 3D computer vision. Almost every theoretical issue is underpinned with practical implementation or a working algorithm using pseudo-code and complete code written in C++ and MatLab®. There is the additional clarification of an accompanying website with downloadable software, case studies and exercises. Organised in three parts, Cyganek and Siebert give a brief history of vision research, and subsequently: present basic low-level image processing operations for image matching, including a separate chapter on image matching algorithms; explain scale-space vision, as well as space reconstruction and multiview integration; demonstrate a variety of practical applications for 3D surface imaging and analysis; provide concise appendices on topics such as the basics of projective geometry and tensor calculus for image processing, distortion and noise in images plus image warping procedures. An Introduction to 3D Computer Vision Algorithms and Techniques is a valuable reference for practitioners and programmers working in 3D computer vision, image processing and analysis as well as computer visualisation. It would also be of interest to advanced students and researchers in the fields of engineering, computer science, clinical photography, robotics, graphics and mathematics.

Oriented Projective Geometry

Download Oriented Projective Geometry PDF Online Free

Author :
Publisher : Academic Press
ISBN 13 : 1483265196
Total Pages : 246 pages
Book Rating : 4.4/5 (832 download)

DOWNLOAD NOW!


Book Synopsis Oriented Projective Geometry by : Jorge Stolfi

Download or read book Oriented Projective Geometry written by Jorge Stolfi and published by Academic Press. This book was released on 2014-05-10 with total page 246 pages. Available in PDF, EPUB and Kindle. Book excerpt: Oriented Projective Geometry: A Framework for Geometric Computations proposes that oriented projective geometry is a better framework for geometric computations than classical projective geometry. The aim of the book is to stress the value of oriented projective geometry for practical computing and develop it as a rich, consistent, and effective tool for computer programmers. The monograph is comprised of 20 chapters. Chapter 1 gives a quick overview of classical and oriented projective geometry on the plane, and discusses their advantages and disadvantages as computational models. Chapters 2 through 7 define the canonical oriented projective spaces of arbitrary dimension, the operations of join and meet, and the concept of relative orientation. Chapter 8 defines projective maps, the space transformations that preserve incidence and orientation; these maps are used in chapter 9 to define abstract oriented projective spaces. Chapter 10 introduces the notion of projective duality. Chapters 11, 12, and 13 deal with projective functions, projective frames, relative coordinates, and cross-ratio. Chapter 14 tells about convexity in oriented projective spaces. Chapters 15, 16, and 17 show how the affine, Euclidean, and linear vector spaces can be emulated with the oriented projective space. Finally, chapters 18 through 20 discuss the computer representation and manipulation of lines, planes, and other subspaces. Computer scientists and programmers will find this text invaluable.