The Qualitative Theory of Ordinary Differential Equations

Download The Qualitative Theory of Ordinary Differential Equations PDF Online Free

Author :
Publisher : Courier Corporation
ISBN 13 : 0486151514
Total Pages : 325 pages
Book Rating : 4.4/5 (861 download)

DOWNLOAD NOW!


Book Synopsis The Qualitative Theory of Ordinary Differential Equations by : Fred Brauer

Download or read book The Qualitative Theory of Ordinary Differential Equations written by Fred Brauer and published by Courier Corporation. This book was released on 2012-12-11 with total page 325 pages. Available in PDF, EPUB and Kindle. Book excerpt: Superb, self-contained graduate-level text covers standard theorems concerning linear systems, existence and uniqueness of solutions, and dependence on parameters. Focuses on stability theory and its applications to oscillation phenomena, self-excited oscillations, more. Includes exercises.

The Qualitative Theory of Ordinary Differential Equations

Download The Qualitative Theory of Ordinary Differential Equations PDF Online Free

Author :
Publisher : Courier Corporation
ISBN 13 : 9780486658469
Total Pages : 340 pages
Book Rating : 4.6/5 (584 download)

DOWNLOAD NOW!


Book Synopsis The Qualitative Theory of Ordinary Differential Equations by : Fred Brauer

Download or read book The Qualitative Theory of Ordinary Differential Equations written by Fred Brauer and published by Courier Corporation. This book was released on 1989-01-01 with total page 340 pages. Available in PDF, EPUB and Kindle. Book excerpt: "This is a very good book ... with many well-chosen examples and illustrations." — American Mathematical Monthly This highly regarded text presents a self-contained introduction to some important aspects of modern qualitative theory for ordinary differential equations. It is accessible to any student of physical sciences, mathematics or engineering who has a good knowledge of calculus and of the elements of linear algebra. In addition, algebraic results are stated as needed; the less familiar ones are proved either in the text or in appendixes. The topics covered in the first three chapters are the standard theorems concerning linear systems, existence and uniqueness of solutions, and dependence on parameters. The next three chapters, the heart of the book, deal with stability theory and some applications, such as oscillation phenomena, self-excited oscillations and the regulator problem of Lurie. One of the special features of this work is its abundance of exercises-routine computations, completions of mathematical arguments, extensions of theorems and applications to physical problems. Moreover, they are found in the body of the text where they naturally occur, offering students substantial aid in understanding the ideas and concepts discussed. The level is intended for students ranging from juniors to first-year graduate students in mathematics, physics or engineering; however, the book is also ideal for a one-semester undergraduate course in ordinary differential equations, or for engineers in need of a course in state space methods.

Ordinary Differential Equations

Download Ordinary Differential Equations PDF Online Free

Author :
Publisher : American Mathematical Society
ISBN 13 : 1470473860
Total Pages : 264 pages
Book Rating : 4.4/5 (74 download)

DOWNLOAD NOW!


Book Synopsis Ordinary Differential Equations by : Luis Barreira

Download or read book Ordinary Differential Equations written by Luis Barreira and published by American Mathematical Society. This book was released on 2023-05-17 with total page 264 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook provides a comprehensive introduction to the qualitative theory of ordinary differential equations. It includes a discussion of the existence and uniqueness of solutions, phase portraits, linear equations, stability theory, hyperbolicity and equations in the plane. The emphasis is primarily on results and methods that allow one to analyze qualitative properties of the solutions without solving the equations explicitly. The text includes numerous examples that illustrate in detail the new concepts and results as well as exercises at the end of each chapter. The book is also intended to serve as a bridge to important topics that are often left out of a course on ordinary differential equations. In particular, it provides brief introductions to bifurcation theory, center manifolds, normal forms and Hamiltonian systems.

Qualitative Theory of Differential Equations

Download Qualitative Theory of Differential Equations PDF Online Free

Author :
Publisher :
ISBN 13 : 9780691652283
Total Pages : 0 pages
Book Rating : 4.6/5 (522 download)

DOWNLOAD NOW!


Book Synopsis Qualitative Theory of Differential Equations by : Viktor Vladimirovich Nemytskii

Download or read book Qualitative Theory of Differential Equations written by Viktor Vladimirovich Nemytskii and published by . This book was released on 2016-04-19 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Book 22 in the Princeton Mathematical Series. Originally published in 1960. The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These editions preserve the original texts of these important books while presenting them in durable paperback and hardcover editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.

Qualitative Theory of Differential Equations

Download Qualitative Theory of Differential Equations PDF Online Free

Author :
Publisher : American Mathematical Soc.
ISBN 13 : 0821841831
Total Pages : 480 pages
Book Rating : 4.8/5 (218 download)

DOWNLOAD NOW!


Book Synopsis Qualitative Theory of Differential Equations by : Zhifen Zhang

Download or read book Qualitative Theory of Differential Equations written by Zhifen Zhang and published by American Mathematical Soc.. This book was released on 1992 with total page 480 pages. Available in PDF, EPUB and Kindle. Book excerpt: Subriemannian geometries, also known as Carnot-Caratheodory geometries, can be viewed as limits of Riemannian geometries. They also arise in physical phenomenon involving ``geometric phases'' or holonomy. Very roughly speaking, a subriemannian geometry consists of a manifold endowed with a distribution (meaning a $k$-plane field, or subbundle of the tangent bundle), called horizontal together with an inner product on that distribution. If $k=n$, the dimension of the manifold, we get the usual Riemannian geometry. Given a subriemannian geometry, we can define the distance between two points just as in the Riemannian case, except we are only allowed to travel along the horizontal lines between two points. The book is devoted to the study of subriemannian geometries, their geodesics, and their applications. It starts with the simplest nontrivial example of a subriemannian geometry: the two-dimensional isoperimetric problem reformulated as a problem of finding subriemannian geodesics. Among topics discussed in other chapters of the first part of the book the author mentions an elementary exposition of Gromov's surprising idea to use subriemannian geometry for proving a theorem in discrete group theory and Cartan's method of equivalence applied to the problem of understanding invariants (diffeomorphism types) of distributions. There is also a chapter devoted to open problems. The second part of the book is devoted to applications of subriemannian geometry. In particular, the author describes in detail the following four physical problems: Berry's phase in quantum mechanics, the problem of a falling cat righting herself, that of a microorganism swimming, and a phase problem arising in the $N$-body problem. He shows that all these problems can be studied using the same underlying type of subriemannian geometry: that of a principal bundle endowed with $G$-invariant metrics. Reading the book requires introductory knowledge of differential geometry, and it can serve as a good introduction to this new, exciting area of mathematics. This book provides an introduction to and a comprehensive study of the qualitative theory of ordinary differential equations. It begins with fundamental theorems on existence, uniqueness, and initial conditions, and discusses basic principles in dynamical systems and Poincare-Bendixson theory. The authors present a careful analysis of solutions near critical points of linear and nonlinear planar systems and discuss indices of planar critical points. A very thorough study of limit cycles is given, including many results on quadratic systems and recent developments in China. Other topics included are: the critical point at infinity, harmonic solutions for periodic differential equations, systems of ordinary differential equations on the torus, and structural stability for systems on two-dimensional manifolds. This books is accessible to graduate students and advanced undergraduates and is also of interest to researchers in this area. Exercises are included at the end of each chapter.

A First Course in the Qualitative Theory of Differential Equations

Download A First Course in the Qualitative Theory of Differential Equations PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 584 pages
Book Rating : 4.X/5 (4 download)

DOWNLOAD NOW!


Book Synopsis A First Course in the Qualitative Theory of Differential Equations by : James Hetao Liu

Download or read book A First Course in the Qualitative Theory of Differential Equations written by James Hetao Liu and published by . This book was released on 2003 with total page 584 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a complete analysis of those subjects that are of fundamental importance to the qualitative theory of differential equations and related to current research-including details that other books in the field tend to overlook. Chapters 1-7 cover the basic qualitative properties concerning existence and uniqueness, structures of solutions, phase portraits, stability, bifurcation and chaos. Chapters 8-12 cover stability, dynamical systems, and bounded and periodic solutions. A good reference book for teachers, researchers, and other professionals.

Qualitative Theory of Planar Differential Systems

Download Qualitative Theory of Planar Differential Systems PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 3540329021
Total Pages : 309 pages
Book Rating : 4.5/5 (43 download)

DOWNLOAD NOW!


Book Synopsis Qualitative Theory of Planar Differential Systems by : Freddy Dumortier

Download or read book Qualitative Theory of Planar Differential Systems written by Freddy Dumortier and published by Springer Science & Business Media. This book was released on 2006-10-13 with total page 309 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book deals with systems of polynomial autonomous ordinary differential equations in two real variables. The emphasis is mainly qualitative, although attention is also given to more algebraic aspects as a thorough study of the center/focus problem and recent results on integrability. In the last two chapters the performant software tool P4 is introduced. From the start, differential systems are represented by vector fields enabling, in full strength, a dynamical systems approach. All essential notions, including invariant manifolds, normal forms, desingularization of singularities, index theory and limit cycles, are introduced and the main results are proved for smooth systems with the necessary specifications for analytic and polynomial systems.

Ordinary Differential Equations

Download Ordinary Differential Equations PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 1447163982
Total Pages : 342 pages
Book Rating : 4.4/5 (471 download)

DOWNLOAD NOW!


Book Synopsis Ordinary Differential Equations by : Hartmut Logemann

Download or read book Ordinary Differential Equations written by Hartmut Logemann and published by Springer. This book was released on 2014-07-08 with total page 342 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book comprises a rigorous and self-contained treatment of initial-value problems for ordinary differential equations. It additionally develops the basics of control theory, which is a unique feature in current textbook literature. The following topics are particularly emphasised: • existence, uniqueness and continuation of solutions, • continuous dependence on initial data, • flows, • qualitative behaviour of solutions, • limit sets, • stability theory, • invariance principles, • introductory control theory, • feedback and stabilization. The last two items cover classical control theoretic material such as linear control theory and absolute stability of nonlinear feedback systems. It also includes an introduction to the more recent concept of input-to-state stability. Only a basic grounding in linear algebra and analysis is assumed. Ordinary Differential Equations will be suitable for final year undergraduate students of mathematics and appropriate for beginning postgraduates in mathematics and in mathematically oriented engineering and science.

The Theory of Differential Equations

Download The Theory of Differential Equations PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1441957839
Total Pages : 434 pages
Book Rating : 4.4/5 (419 download)

DOWNLOAD NOW!


Book Synopsis The Theory of Differential Equations by : Walter G. Kelley

Download or read book The Theory of Differential Equations written by Walter G. Kelley and published by Springer Science & Business Media. This book was released on 2010-04-15 with total page 434 pages. Available in PDF, EPUB and Kindle. Book excerpt: For over 300 years, differential equations have served as an essential tool for describing and analyzing problems in many scientific disciplines. This carefully-written textbook provides an introduction to many of the important topics associated with ordinary differential equations. Unlike most textbooks on the subject, this text includes nonstandard topics such as perturbation methods and differential equations and Mathematica. In addition to the nonstandard topics, this text also contains contemporary material in the area as well as its classical topics. This second edition is updated to be compatible with Mathematica, version 7.0. It also provides 81 additional exercises, a new section in Chapter 1 on the generalized logistic equation, an additional theorem in Chapter 2 concerning fundamental matrices, and many more other enhancements to the first edition. This book can be used either for a second course in ordinary differential equations or as an introductory course for well-prepared students. The prerequisites for this book are three semesters of calculus and a course in linear algebra, although the needed concepts from linear algebra are introduced along with examples in the book. An undergraduate course in analysis is needed for the more theoretical subjects covered in the final two chapters.

Ordinary Differential Equations and Dynamical Systems

Download Ordinary Differential Equations and Dynamical Systems PDF Online Free

Author :
Publisher : American Mathematical Society
ISBN 13 : 147047641X
Total Pages : 370 pages
Book Rating : 4.4/5 (74 download)

DOWNLOAD NOW!


Book Synopsis Ordinary Differential Equations and Dynamical Systems by : Gerald Teschl

Download or read book Ordinary Differential Equations and Dynamical Systems written by Gerald Teschl and published by American Mathematical Society. This book was released on 2024-01-12 with total page 370 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a self-contained introduction to ordinary differential equations and dynamical systems suitable for beginning graduate students. The first part begins with some simple examples of explicitly solvable equations and a first glance at qualitative methods. Then the fundamental results concerning the initial value problem are proved: existence, uniqueness, extensibility, dependence on initial conditions. Furthermore, linear equations are considered, including the Floquet theorem, and some perturbation results. As somewhat independent topics, the Frobenius method for linear equations in the complex domain is established and Sturm–Liouville boundary value problems, including oscillation theory, are investigated. The second part introduces the concept of a dynamical system. The Poincaré–Bendixson theorem is proved, and several examples of planar systems from classical mechanics, ecology, and electrical engineering are investigated. Moreover, attractors, Hamiltonian systems, the KAM theorem, and periodic solutions are discussed. Finally, stability is studied, including the stable manifold and the Hartman–Grobman theorem for both continuous and discrete systems. The third part introduces chaos, beginning with the basics for iterated interval maps and ending with the Smale–Birkhoff theorem and the Melnikov method for homoclinic orbits. The text contains almost three hundred exercises. Additionally, the use of mathematical software systems is incorporated throughout, showing how they can help in the study of differential equations.

Ordinary Differential Equations: Basics and Beyond

Download Ordinary Differential Equations: Basics and Beyond PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 1493963899
Total Pages : 565 pages
Book Rating : 4.4/5 (939 download)

DOWNLOAD NOW!


Book Synopsis Ordinary Differential Equations: Basics and Beyond by : David G. Schaeffer

Download or read book Ordinary Differential Equations: Basics and Beyond written by David G. Schaeffer and published by Springer. This book was released on 2016-11-10 with total page 565 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book develops the theory of ordinary differential equations (ODEs), starting from an introductory level (with no prior experience in ODEs assumed) through to a graduate-level treatment of the qualitative theory, including bifurcation theory (but not chaos). While proofs are rigorous, the exposition is reader-friendly, aiming for the informality of face-to-face interactions. A unique feature of this book is the integration of rigorous theory with numerous applications of scientific interest. Besides providing motivation, this synthesis clarifies the theory and enhances scientific literacy. Other features include: (i) a wealth of exercises at various levels, along with commentary that explains why they matter; (ii) figures with consistent color conventions to identify nullclines, periodic orbits, stable and unstable manifolds; and (iii) a dedicated website with software templates, problem solutions, and other resources supporting the text (www.math.duke.edu/ode-book). Given its many applications, the book may be used comfortably in science and engineering courses as well as in mathematics courses. Its level is accessible to upper-level undergraduates but still appropriate for graduate students. The thoughtful presentation, which anticipates many confusions of beginning students, makes the book suitable for a teaching environment that emphasizes self-directed, active learning (including the so-called inverted classroom).

Theory and Applications of Partial Functional Differential Equations

Download Theory and Applications of Partial Functional Differential Equations PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1461240506
Total Pages : 441 pages
Book Rating : 4.4/5 (612 download)

DOWNLOAD NOW!


Book Synopsis Theory and Applications of Partial Functional Differential Equations by : Jianhong Wu

Download or read book Theory and Applications of Partial Functional Differential Equations written by Jianhong Wu and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 441 pages. Available in PDF, EPUB and Kindle. Book excerpt: Abstract semilinear functional differential equations arise from many biological, chemical, and physical systems which are characterized by both spatial and temporal variables and exhibit various spatio-temporal patterns. The aim of this book is to provide an introduction of the qualitative theory and applications of these equations from the dynamical systems point of view. The required prerequisites for that book are at a level of a graduate student. The style of presentation will be appealing to people trained and interested in qualitative theory of ordinary and functional differential equations.

Ordinary Differential Equations

Download Ordinary Differential Equations PDF Online Free

Author :
Publisher : Chapman & Hall
ISBN 13 :
Total Pages : 270 pages
Book Rating : 4.3/5 (91 download)

DOWNLOAD NOW!


Book Synopsis Ordinary Differential Equations by : D. K. Arrowsmith

Download or read book Ordinary Differential Equations written by D. K. Arrowsmith and published by Chapman & Hall. This book was released on 1982 with total page 270 pages. Available in PDF, EPUB and Kindle. Book excerpt:

A Second Course in Elementary Differential Equations

Download A Second Course in Elementary Differential Equations PDF Online Free

Author :
Publisher : Elsevier
ISBN 13 : 1483276600
Total Pages : 272 pages
Book Rating : 4.4/5 (832 download)

DOWNLOAD NOW!


Book Synopsis A Second Course in Elementary Differential Equations by : Paul Waltman

Download or read book A Second Course in Elementary Differential Equations written by Paul Waltman and published by Elsevier. This book was released on 2014-05-10 with total page 272 pages. Available in PDF, EPUB and Kindle. Book excerpt: A Second Course in Elementary Differential Equations deals with norms, metric spaces, completeness, inner products, and an asymptotic behavior in a natural setting for solving problems in differential equations. The book reviews linear algebra, constant coefficient case, repeated eigenvalues, and the employment of the Putzer algorithm for nondiagonalizable coefficient matrix. The text describes, in geometrical and in an intuitive approach, Liapunov stability, qualitative behavior, the phase plane concepts, polar coordinate techniques, limit cycles, the Poincaré-Bendixson theorem. The book explores, in an analytical procedure, the existence and uniqueness theorems, metric spaces, operators, contraction mapping theorem, and initial value problems. The contraction mapping theorem concerns operators that map a given metric space into itself, in which, where an element of the metric space M, an operator merely associates with it a unique element of M. The text also tackles inner products, orthogonality, bifurcation, as well as linear boundary value problems, (particularly the Sturm-Liouville problem). The book is intended for mathematics or physics students engaged in ordinary differential equations, and for biologists, engineers, economists, or chemists who need to master the prerequisites for a graduate course in mathematics.

Ordinary Differential Equations

Download Ordinary Differential Equations PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1420014935
Total Pages : 408 pages
Book Rating : 4.4/5 (2 download)

DOWNLOAD NOW!


Book Synopsis Ordinary Differential Equations by : Jane Cronin

Download or read book Ordinary Differential Equations written by Jane Cronin and published by CRC Press. This book was released on 2007-12-14 with total page 408 pages. Available in PDF, EPUB and Kindle. Book excerpt: Designed for a rigorous first course in ordinary differential equations, Ordinary Differential Equations: Introduction and Qualitative Theory, Third Edition includes basic material such as the existence and properties of solutions, linear equations, autonomous equations, and stability as well as more advanced topics in periodic solutions of

A Short Course in Ordinary Differential Equations

Download A Short Course in Ordinary Differential Equations PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3319112392
Total Pages : 276 pages
Book Rating : 4.3/5 (191 download)

DOWNLOAD NOW!


Book Synopsis A Short Course in Ordinary Differential Equations by : Qingkai Kong

Download or read book A Short Course in Ordinary Differential Equations written by Qingkai Kong and published by Springer. This book was released on 2014-10-21 with total page 276 pages. Available in PDF, EPUB and Kindle. Book excerpt: This text is a rigorous treatment of the basic qualitative theory of ordinary differential equations, at the beginning graduate level. Designed as a flexible one-semester course but offering enough material for two semesters, A Short Course covers core topics such as initial value problems, linear differential equations, Lyapunov stability, dynamical systems and the Poincaré—Bendixson theorem, and bifurcation theory, and second-order topics including oscillation theory, boundary value problems, and Sturm—Liouville problems. The presentation is clear and easy-to-understand, with figures and copious examples illustrating the meaning of and motivation behind definitions, hypotheses, and general theorems. A thoughtfully conceived selection of exercises together with answers and hints reinforce the reader's understanding of the material. Prerequisites are limited to advanced calculus and the elementary theory of differential equations and linear algebra, making the text suitable for senior undergraduates as well.

Ordinary Differential Equations

Download Ordinary Differential Equations PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 1108416411
Total Pages : 349 pages
Book Rating : 4.1/5 (84 download)

DOWNLOAD NOW!


Book Synopsis Ordinary Differential Equations by : A. K. Nandakumaran

Download or read book Ordinary Differential Equations written by A. K. Nandakumaran and published by Cambridge University Press. This book was released on 2017-05-11 with total page 349 pages. Available in PDF, EPUB and Kindle. Book excerpt: An easy to understand guide covering key principles of ordinary differential equations and their applications.