Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
The Norm Residue Theorem In Motivic Cohomology
Download The Norm Residue Theorem In Motivic Cohomology full books in PDF, epub, and Kindle. Read online The Norm Residue Theorem In Motivic Cohomology ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis The Norm Residue Theorem in Motivic Cohomology by : Christian Haesemeyer
Download or read book The Norm Residue Theorem in Motivic Cohomology written by Christian Haesemeyer and published by Princeton University Press. This book was released on 2019-06-11 with total page 316 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents the complete proof of the Bloch-Kato conjecture and several related conjectures of Beilinson and Lichtenbaum in algebraic geometry. Brought together here for the first time, these conjectures describe the structure of étale cohomology and its relation to motivic cohomology and Chow groups. Although the proof relies on the work of several people, it is credited primarily to Vladimir Voevodsky. The authors draw on a multitude of published and unpublished sources to explain the large-scale structure of Voevodsky’s proof and introduce the key figures behind its development. They proceed to describe the highly innovative geometric constructions of Markus Rost, including the construction of norm varieties, which play a crucial role in the proof. The book then addresses symmetric powers of motives and motivic cohomology operations. Comprehensive and self-contained, The Norm Residue Theorem in Motivic Cohomology unites various components of the proof that until now were scattered across many sources of varying accessibility, often with differing hypotheses, definitions, and language.
Book Synopsis Lecture Notes on Motivic Cohomology by : Carlo Mazza
Download or read book Lecture Notes on Motivic Cohomology written by Carlo Mazza and published by American Mathematical Soc.. This book was released on 2006 with total page 240 pages. Available in PDF, EPUB and Kindle. Book excerpt: The notion of a motive is an elusive one, like its namesake "the motif" of Cezanne's impressionist method of painting. Its existence was first suggested by Grothendieck in 1964 as the underlying structure behind the myriad cohomology theories in Algebraic Geometry. We now know that there is a triangulated theory of motives, discovered by Vladimir Voevodsky, which suffices for the development of a satisfactory Motivic Cohomology theory. However, the existence of motives themselves remains conjectural. This book provides an account of the triangulated theory of motives. Its purpose is to introduce Motivic Cohomology, to develop its main properties, and finally to relate it to other known invariants of algebraic varieties and rings such as Milnor K-theory, etale cohomology, and Chow groups. The book is divided into lectures, grouped in six parts. The first part presents the definition of Motivic Cohomology, based upon the notion of presheaves with transfers. Some elementary comparison theorems are given in this part. The theory of (etale, Nisnevich, and Zariski) sheaves with transfers is developed in parts two, three, and six, respectively. The theoretical core of the book is the fourth part, presenting the triangulated category of motives. Finally, the comparison with higher Chow groups is developed in part five. The lecture notes format is designed for the book to be read by an advanced graduate student or an expert in a related field. The lectures roughly correspond to one-hour lectures given by Voevodsky during the course he gave at the Institute for Advanced Study in Princeton on this subject in 1999-2000. In addition, many of the original proofs have been simplified and improved so that this book will also be a useful tool for research mathematicians. Information for our distributors: Titles in this series are copublished with the Clay Mathematics Institute (Cambridge, MA).
Book Synopsis The Bloch–Kato Conjecture for the Riemann Zeta Function by : John Coates
Download or read book The Bloch–Kato Conjecture for the Riemann Zeta Function written by John Coates and published by Cambridge University Press. This book was released on 2015-03-19 with total page 317 pages. Available in PDF, EPUB and Kindle. Book excerpt: There are still many arithmetic mysteries surrounding the values of the Riemann zeta function at the odd positive integers greater than one. For example, the matter of their irrationality, let alone transcendence, remains largely unknown. However, by extending ideas of Garland, Borel proved that these values are related to the higher K-theory of the ring of integers. Shortly afterwards, Bloch and Kato proposed a Tamagawa number-type conjecture for these values, and showed that it would follow from a result in motivic cohomology which was unknown at the time. This vital result from motivic cohomology was subsequently proven by Huber, Kings, and Wildeshaus. Bringing together key results from K-theory, motivic cohomology, and Iwasawa theory, this book is the first to give a complete proof, accessible to graduate students, of the Bloch–Kato conjecture for odd positive integers. It includes a new account of the results from motivic cohomology by Huber and Kings.
Book Synopsis The Arithmetic and Geometry of Algebraic Cycles by : B. Brent Gordon
Download or read book The Arithmetic and Geometry of Algebraic Cycles written by B. Brent Gordon and published by Springer Science & Business Media. This book was released on 2000-02-29 with total page 652 pages. Available in PDF, EPUB and Kindle. Book excerpt: The subject of algebraic cycles has thrived through its interaction with algebraic K-theory, Hodge theory, arithmetic algebraic geometry, number theory, and topology. These interactions have led to such developments as a description of Chow groups in terms of algebraic K-theory, the arithmetic Abel-Jacobi mapping, progress on the celebrated conjectures of Hodge and Tate, and the conjectures of Bloch and Beilinson. The immense recent progress in algebraic cycles, based on so many interactions with so many other areas of mathematics, has contributed to a considerable degree of inaccessibility, especially for graduate students. Even specialists in one approach to algebraic cycles may not understand other approaches well. This book offers students and specialists alike a broad perspective of algebraic cycles, presented from several viewpoints, including arithmetic, transcendental, topological, motives and K-theory methods. Topics include a discussion of the arithmetic Abel-Jacobi mapping, higher Abel-Jacobi regulator maps, polylogarithms and L-series, candidate Bloch-Beilinson filtrations, applications of Chern-Simons invariants to algebraic cycles via the study of algebraic vector bundles with algebraic connection, motivic cohomology, Chow groups of singular varieties, and recent progress on the Hodge and Tate conjectures for Abelian varieties.
Book Synopsis Quadratic Forms, Linear Algebraic Groups, and Cohomology by : Skip Garibaldi
Download or read book Quadratic Forms, Linear Algebraic Groups, and Cohomology written by Skip Garibaldi and published by Springer Science & Business Media. This book was released on 2010-07-16 with total page 344 pages. Available in PDF, EPUB and Kindle. Book excerpt: Developments in Mathematics is a book series devoted to all areas of mathematics, pure and applied. The series emphasizes research monographs describing the latest advances. Edited volumes that focus on areas that have seen dramatic progress, or are of special interest, are encouraged as well.
Download or read book The $K$-book written by Charles A. Weibel and published by American Mathematical Soc.. This book was released on 2013-06-13 with total page 634 pages. Available in PDF, EPUB and Kindle. Book excerpt: Informally, $K$-theory is a tool for probing the structure of a mathematical object such as a ring or a topological space in terms of suitably parameterized vector spaces and producing important intrinsic invariants which are useful in the study of algebr
Book Synopsis Advanced Modern Algebra by : Joseph J. Rotman
Download or read book Advanced Modern Algebra written by Joseph J. Rotman and published by American Mathematical Society. This book was released on 2023-02-22 with total page 570 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is the second part of the new edition of Advanced Modern Algebra (the first part published as Graduate Studies in Mathematics, Volume 165). Compared to the previous edition, the material has been significantly reorganized and many sections have been rewritten. The book presents many topics mentioned in the first part in greater depth and in more detail. The five chapters of the book are devoted to group theory, representation theory, homological algebra, categories, and commutative algebra, respectively. The book can be used as a text for a second abstract algebra graduate course, as a source of additional material to a first abstract algebra graduate course, or for self-study.
Book Synopsis Motivic Homotopy Theory by : Bjorn Ian Dundas
Download or read book Motivic Homotopy Theory written by Bjorn Ian Dundas and published by Springer Science & Business Media. This book was released on 2007-07-11 with total page 228 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is based on lectures given at a summer school on motivic homotopy theory at the Sophus Lie Centre in Nordfjordeid, Norway, in August 2002. Aimed at graduate students in algebraic topology and algebraic geometry, it contains background material from both of these fields, as well as the foundations of motivic homotopy theory. It will serve as a good introduction as well as a convenient reference for a broad group of mathematicians to this important and fascinating new subject. Vladimir Voevodsky is one of the founders of the theory and received the Fields medal for his work, and the other authors have all done important work in the subject.
Book Synopsis Introduction to Algebraic Geometry by : Igor Kriz
Download or read book Introduction to Algebraic Geometry written by Igor Kriz and published by Springer Nature. This book was released on 2021-03-13 with total page 481 pages. Available in PDF, EPUB and Kindle. Book excerpt: The goal of this book is to provide an introduction to algebraic geometry accessible to students. Starting from solutions of polynomial equations, modern tools of the subject soon appear, motivated by how they improve our understanding of geometrical concepts. In many places, analogies and differences with related mathematical areas are explained. The text approaches foundations of algebraic geometry in a complete and self-contained way, also covering the underlying algebra. The last two chapters include a comprehensive treatment of cohomology and discuss some of its applications in algebraic geometry.
Author : Publisher :World Scientific ISBN 13 : Total Pages :1191 pages Book Rating :4./5 ( download)
Download or read book written by and published by World Scientific. This book was released on with total page 1191 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis Proceedings Of The International Congress Of Mathematicians 2010 (Icm 2010) (In 4 Volumes) - Vol. I: Plenary Lectures And Ceremonies, Vols. Ii-iv: Invited Lectures by : Rajendra Bhatia
Download or read book Proceedings Of The International Congress Of Mathematicians 2010 (Icm 2010) (In 4 Volumes) - Vol. I: Plenary Lectures And Ceremonies, Vols. Ii-iv: Invited Lectures written by Rajendra Bhatia and published by World Scientific. This book was released on 2011-06-06 with total page 4137 pages. Available in PDF, EPUB and Kindle. Book excerpt: ICM 2010 proceedings comprises a four-volume set containing articles based on plenary lectures and invited section lectures, the Abel and Noether lectures, as well as contributions based on lectures delivered by the recipients of the Fields Medal, the Nevanlinna, and Chern Prizes. The first volume will also contain the speeches at the opening and closing ceremonies and other highlights of the Congress.
Book Synopsis K-theory and Noncommutative Geometry by : Guillermo Cortiñas
Download or read book K-theory and Noncommutative Geometry written by Guillermo Cortiñas and published by European Mathematical Society. This book was released on 2008 with total page 460 pages. Available in PDF, EPUB and Kindle. Book excerpt: Since its inception 50 years ago, K-theory has been a tool for understanding a wide-ranging family of mathematical structures and their invariants: topological spaces, rings, algebraic varieties and operator algebras are the dominant examples. The invariants range from characteristic classes in cohomology, determinants of matrices, Chow groups of varieties, as well as traces and indices of elliptic operators. Thus K-theory is notable for its connections with other branches of mathematics. Noncommutative geometry develops tools which allow one to think of noncommutative algebras in the same footing as commutative ones: as algebras of functions on (noncommutative) spaces. The algebras in question come from problems in various areas of mathematics and mathematical physics; typical examples include algebras of pseudodifferential operators, group algebras, and other algebras arising from quantum field theory. To study noncommutative geometric problems one considers invariants of the relevant noncommutative algebras. These invariants include algebraic and topological K-theory, and also cyclic homology, discovered independently by Alain Connes and Boris Tsygan, which can be regarded both as a noncommutative version of de Rham cohomology and as an additive version of K-theory. There are primary and secondary Chern characters which pass from K-theory to cyclic homology. These characters are relevant both to noncommutative and commutative problems and have applications ranging from index theorems to the detection of singularities of commutative algebraic varieties. The contributions to this volume represent this range of connections between K-theory, noncommmutative geometry, and other branches of mathematics.
Download or read book Number Theory written by Sinnou David and published by Cambridge University Press. This book was released on 1996-11-07 with total page 227 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book covers the whole spectrum of number theory, and is composed of contributions from some of the best specialists worldwide.
Book Synopsis Functional Analysis with Applications by : Svetlin G. Georgiev
Download or read book Functional Analysis with Applications written by Svetlin G. Georgiev and published by Walter de Gruyter GmbH & Co KG. This book was released on 2019-06-17 with total page 404 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book on functional analysis covers all the basics of the subject (normed, Banach and Hilbert spaces, Lebesgue integration and spaces, linear operators and functionals, compact and self-adjoint operators, small parameters, fixed point theory) with a strong focus on examples, exercises and practical problems, thus making it ideal as course material but also as a reference for self-study.
Book Synopsis An Introduction to Homological Algebra by : Charles A. Weibel
Download or read book An Introduction to Homological Algebra written by Charles A. Weibel and published by Cambridge University Press. This book was released on 1995-10-27 with total page 470 pages. Available in PDF, EPUB and Kindle. Book excerpt: The landscape of homological algebra has evolved over the last half-century into a fundamental tool for the working mathematician. This book provides a unified account of homological algebra as it exists today. The historical connection with topology, regular local rings, and semi-simple Lie algebras are also described. This book is suitable for second or third year graduate students. The first half of the book takes as its subject the canonical topics in homological algebra: derived functors, Tor and Ext, projective dimensions and spectral sequences. Homology of group and Lie algebras illustrate these topics. Intermingled are less canonical topics, such as the derived inverse limit functor lim1, local cohomology, Galois cohomology, and affine Lie algebras. The last part of the book covers less traditional topics that are a vital part of the modern homological toolkit: simplicial methods, Hochschild and cyclic homology, derived categories and total derived functors. By making these tools more accessible, the book helps to break down the technological barrier between experts and casual users of homological algebra.
Book Synopsis Handbook of K-Theory by : Eric Friedlander
Download or read book Handbook of K-Theory written by Eric Friedlander and published by Springer Science & Business Media. This book was released on 2005-07-18 with total page 1148 pages. Available in PDF, EPUB and Kindle. Book excerpt: This handbook offers a compilation of techniques and results in K-theory. Each chapter is dedicated to a specific topic and is written by a leading expert. Many chapters present historical background; some present previously unpublished results, whereas some present the first expository account of a topic; many discuss future directions as well as open problems. It offers an exposition of our current state of knowledge as well as an implicit blueprint for future research.
Download or read book Algebraic Topology written by Nils Baas and published by Springer Science & Business Media. This book was released on 2009-08-05 with total page 417 pages. Available in PDF, EPUB and Kindle. Book excerpt: The 2007 Abel Symposium took place at the University of Oslo in August 2007. The goal of the symposium was to bring together mathematicians whose research efforts have led to recent advances in algebraic geometry, algebraic K-theory, algebraic topology, and mathematical physics. A common theme of this symposium was the development of new perspectives and new constructions with a categorical flavor. As the lectures at the symposium and the papers of this volume demonstrate, these perspectives and constructions have enabled a broadening of vistas, a synergy between once-differentiated subjects, and solutions to mathematical problems both old and new.