Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
The Kobayashi Hitchin Correspondence
Download The Kobayashi Hitchin Correspondence full books in PDF, epub, and Kindle. Read online The Kobayashi Hitchin Correspondence ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis The Kobayashi-Hitchin Correspondence by : Martin Lbke
Download or read book The Kobayashi-Hitchin Correspondence written by Martin Lbke and published by World Scientific. This book was released on 1995 with total page 268 pages. Available in PDF, EPUB and Kindle. Book excerpt: By the Kobayashi-Hitchin correspondence, the authors of this book mean the isomorphy of the moduli spaces Mst of stable holomorphic resp. MHE of irreducible Hermitian-Einstein structures in a differentiable complex vector bundle on a compact complex manifold. They give a complete proof of this result in the most general setting, and treat several applications and some new examples.After discussing the stability concept on arbitrary compact complex manifolds in Chapter 1, the authors consider, in Chapter 2, Hermitian-Einstein structures and prove the stability of irreducible Hermitian-Einstein bundles. This implies the existence of a natural map I from MHE to Mst which is bijective by the result of (the rather technical) Chapter 3. In Chapter 4 the moduli spaces involved are studied in detail, in particular it is shown that their natural analytic structures are isomorphic via I. Also a comparison theorem for moduli spaces of instantons resp. stable bundles is proved; this is the form in which the Kobayashi-Hitchin has been used in Donaldson theory to study differentiable structures of complex surfaces. The fact that I is an isomorphism of real analytic spaces is applied in Chapter 5 to show the openness of the stability condition and the existence of a natural Hermitian metric in the moduli space, and to study, at least in some cases, the dependence of Mst on the base metric used to define stability. Another application is a rather simple proof of Bogomolov's theorem on surfaces of type VI0. In Chapter 6, some moduli spaces of stable bundles are calculated to illustrate what can happen in the general (i.e. not necessarily Kahler) case compared to the algebraic or Kahler one. Finally, appendices containing results, especially from Hermitian geometry and analysis, in the form they are used in the main part of the book are included."
Book Synopsis The Universal Kobayashi-Hitchin Correspondence on Hermitian Manifolds by : Martin Lübke
Download or read book The Universal Kobayashi-Hitchin Correspondence on Hermitian Manifolds written by Martin Lübke and published by American Mathematical Soc.. This book was released on 2006 with total page 112 pages. Available in PDF, EPUB and Kindle. Book excerpt: We prove a very general Kobayashi-Hitchin correspondence on arbitrary compact Hermitian manifolds, and we discuss differential geometric properties of the corresponding moduli spaces. This correspondence refers to moduli spaces of ``universal holomorphic oriented pairs''. Most of the classical moduli problems in complex geometry (e. g. holomorphic bundles with reductive structure groups, holomorphic pairs, holomorphic Higgs pairs, Witten triples, arbitrary quiver moduli problems) are special cases of this universal classification problem. Our Kobayashi-Hitchin correspondence relates the complex geometric concept ``polystable oriented holomorphic pair'' to the existence of a reduction solving a generalized Hermitian-Einstein equation. The proof is based on the Uhlenbeck-Yau continuity method. Using ideas from Donaldson theory, we further introduce and investigate canonical Hermitian metrics on such moduli spaces. We discuss in detail remarkable classes of moduli spaces in the non-Kahlerian framework: Oriented holomorphic structures, Quot-spaces, oriented holomorphic pairs and oriented vortices, non-abelian Seiberg-Witten monopoles.
Book Synopsis Kobayashi-Hitchin Correspondence for Tame Harmonic Bundles and an Application by : Takuro Mochizuki
Download or read book Kobayashi-Hitchin Correspondence for Tame Harmonic Bundles and an Application written by Takuro Mochizuki and published by . This book was released on 2006 with total page 132 pages. Available in PDF, EPUB and Kindle. Book excerpt: The author establishes the correspondence between tame harmonic bundles and $\mu _L$-polystable parabolic Higgs bundles with trivial characteristic numbers. He also shows the Bogomolov-Gieseker type inequality for $\mu _L$-stable parabolic Higgs bundles. The author shows that any local system on a smooth quasiprojective variety can be deformed to a variation of polarized Hodge structure. He then concludes that some kind of discrete groups cannot be a split quotient of the fundamental group of a smooth quasiprojective variety.
Book Synopsis Periodic Monopoles and Difference Modules by : Takuro Mochizuki
Download or read book Periodic Monopoles and Difference Modules written by Takuro Mochizuki and published by Springer Nature. This book was released on 2022-02-23 with total page 336 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book studies a class of monopoles defined by certain mild conditions, called periodic monopoles of generalized Cherkis–Kapustin (GCK) type. It presents a classification of the latter in terms of difference modules with parabolic structure, revealing a kind of Kobayashi–Hitchin correspondence between differential geometric objects and algebraic objects. It also clarifies the asymptotic behaviour of these monopoles around infinity. The theory of periodic monopoles of GCK type has applications to Yang–Mills theory in differential geometry and to the study of difference modules in dynamical algebraic geometry. A complete account of the theory is given, including major generalizations of results due to Charbonneau, Cherkis, Hurtubise, Kapustin, and others, and a new and original generalization of the nonabelian Hodge correspondence first studied by Corlette, Donaldson, Hitchin and Simpson. This work will be of interest to graduate students and researchers in differential and algebraic geometry, as well as in mathematical physics.
Book Synopsis Donaldson Type Invariants for Algebraic Surfaces by : Takuro Mochizuki
Download or read book Donaldson Type Invariants for Algebraic Surfaces written by Takuro Mochizuki and published by Springer Science & Business Media. This book was released on 2009-03-26 with total page 404 pages. Available in PDF, EPUB and Kindle. Book excerpt: We are defining and studying an algebro-geometric analogue of Donaldson invariants by using moduli spaces of semistable sheaves with arbitrary ranks on a polarized projective surface.We are interested in relations among the invariants, which are natural generalizations of the "wall-crossing formula" and the "Witten conjecture" for classical Donaldson invariants. Our goal is to obtain a weaker version of these relations, by systematically using the intrinsic smoothness of moduli spaces. According to the recent excellent work of L. Goettsche, H. Nakajima and K. Yoshioka, the wall-crossing formula for Donaldson invariants of projective surfaces can be deduced from such a weaker result in the rank two case!
Book Synopsis Compact Complex Surfaces by : W. Barth
Download or read book Compact Complex Surfaces written by W. Barth and published by Springer. This book was released on 2015-05-22 with total page 439 pages. Available in PDF, EPUB and Kindle. Book excerpt: In the 19 years which passed since the first edition was published, several important developments have taken place in the theory of surfaces. The most sensational one concerns the differentiable structure of surfaces. Twenty years ago very little was known about differentiable structures on 4-manifolds, but in the meantime Donaldson on the one hand and Seiberg and Witten on the other hand, have found, inspired by gauge theory, totally new invariants. Strikingly, together with the theory explained in this book these invariants yield a wealth of new results about the differentiable structure of algebraic surfaces. Other developments include the systematic use of nef-divisors (in ac cordance with the progress made in the classification of higher dimensional algebraic varieties), a better understanding of Kahler structures on surfaces, and Reider's new approach to adjoint mappings. All these developments have been incorporated in the present edition, though the Donaldson and Seiberg-Witten theory only by way of examples. Of course we use the opportunity to correct some minor mistakes, which we ether have discovered ourselves or which were communicated to us by careful readers to whom we are much obliged.
Author :Alexander H. W. Schmitt Publisher :European Mathematical Society ISBN 13 :9783037190654 Total Pages :404 pages Book Rating :4.1/5 (96 download)
Book Synopsis Geometric Invariant Theory and Decorated Principal Bundles by : Alexander H. W. Schmitt
Download or read book Geometric Invariant Theory and Decorated Principal Bundles written by Alexander H. W. Schmitt and published by European Mathematical Society. This book was released on 2008 with total page 404 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book starts with an introduction to Geometric Invariant Theory (GIT). The fundamental results of Hilbert and Mumford are exposed as well as more recent topics such as the instability flag, the finiteness of the number of quotients, and the variation of quotients. In the second part, GIT is applied to solve the classification problem of decorated principal bundles on a compact Riemann surface. The solution is a quasi-projective moduli scheme which parameterizes those objects that satisfy a semistability condition originating from gauge theory. The moduli space is equipped with a generalized Hitchin map. Via the universal Kobayashi-Hitchin correspondence, these moduli spaces are related to moduli spaces of solutions of certain vortex type equations. Potential applications include the study of representation spaces of the fundamental group of compact Riemann surfaces. The book concludes with a brief discussion of generalizations of these findings to higher dimensional base varieties, positive characteristic, and parabolic bundles. The text is fairly self-contained (e.g., the necessary background from the theory of principal bundles is included) and features numerous examples and exercises. It addresses students and researchers with a working knowledge of elementary algebraic geometry.
Book Synopsis Library of Congress Subject Headings by : Library of Congress
Download or read book Library of Congress Subject Headings written by Library of Congress and published by . This book was released on 2010 with total page 2056 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis Library of Congress Subject Headings by : Library of Congress. Cataloging Policy and Support Office
Download or read book Library of Congress Subject Headings written by Library of Congress. Cataloging Policy and Support Office and published by . This book was released on 2003 with total page 1820 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis Space – Time – Matter by : Jochen Brüning
Download or read book Space – Time – Matter written by Jochen Brüning and published by Walter de Gruyter GmbH & Co KG. This book was released on 2018-04-09 with total page 518 pages. Available in PDF, EPUB and Kindle. Book excerpt: This monograph describes some of the most interesting results obtained by the mathematicians and physicists collaborating in the CRC 647 "Space – Time – Matter", in the years 2005 - 2016. The work presented concerns the mathematical and physical foundations of string and quantum field theory as well as cosmology. Important topics are the spaces and metrics modelling the geometry of matter, and the evolution of these geometries. The partial differential equations governing such structures and their singularities, special solutions and stability properties are discussed in detail. Contents Introduction Algebraic K-theory, assembly maps, controlled algebra, and trace methods Lorentzian manifolds with special holonomy – Constructions and global properties Contributions to the spectral geometry of locally homogeneous spaces On conformally covariant differential operators and spectral theory of the holographic Laplacian Moduli and deformations Vector bundles in algebraic geometry and mathematical physics Dyson–Schwinger equations: Fix-point equations for quantum fields Hidden structure in the form factors ofN = 4 SYM On regulating the AdS superstring Constraints on CFT observables from the bootstrap program Simplifying amplitudes in Maxwell-Einstein and Yang-Mills-Einstein supergravities Yangian symmetry in maximally supersymmetric Yang-Mills theory Wave and Dirac equations on manifolds Geometric analysis on singular spaces Singularities and long-time behavior in nonlinear evolution equations and general relativity
Book Synopsis Complex Non-Kähler Geometry by : Sławomir Dinew
Download or read book Complex Non-Kähler Geometry written by Sławomir Dinew and published by Springer Nature. This book was released on 2019-11-05 with total page 256 pages. Available in PDF, EPUB and Kindle. Book excerpt: Collecting together the lecture notes of the CIME Summer School held in Cetraro in July 2018, the aim of the book is to introduce a vast range of techniques which are useful in the investigation of complex manifolds. The school consisted of four courses, focusing on both the construction of non-Kähler manifolds and the understanding of a possible classification of complex non-Kähler manifolds. In particular, the courses by Alberto Verjovsky and Andrei Teleman introduced tools in the theory of foliations and analytic techniques for the classification of compact complex surfaces and compact Kähler manifolds, respectively. The courses by Sebastien Picard and Sławomir Dinew focused on analytic techniques in Hermitian geometry, more precisely, on special Hermitian metrics and geometric flows, and on pluripotential theory in complex non-Kähler geometry.
Book Synopsis Complex and Symplectic Geometry by : Daniele Angella
Download or read book Complex and Symplectic Geometry written by Daniele Angella and published by Springer. This book was released on 2017-10-12 with total page 263 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book arises from the INdAM Meeting "Complex and Symplectic Geometry", which was held in Cortona in June 2016. Several leading specialists, including young researchers, in the field of complex and symplectic geometry, present the state of the art of their research on topics such as the cohomology of complex manifolds; analytic techniques in Kähler and non-Kähler geometry; almost-complex and symplectic structures; special structures on complex manifolds; and deformations of complex objects. The work is intended for researchers in these areas.
Book Synopsis Analysis, Complex Geometry, and Mathematical Physics by : Paul M. N. Feehan
Download or read book Analysis, Complex Geometry, and Mathematical Physics written by Paul M. N. Feehan and published by American Mathematical Soc.. This book was released on 2015-07-21 with total page 388 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume contains the proceedings of the Conference on Analysis, Complex Geometry and Mathematical Physics: In Honor of Duong H. Phong, which was held from May 7-11, 2013, at Columbia University, New York. The conference featured thirty speakers who spoke on a range of topics reflecting the breadth and depth of the research interests of Duong H. Phong on the occasion of his sixtieth birthday. A common thread, familiar from Phong's own work, was the focus on the interplay between the deep tools of analysis and the rich structures of geometry and physics. Papers included in this volume cover topics such as the complex Monge-Ampère equation, pluripotential theory, geometric partial differential equations, theories of integral operators, integrable systems and perturbative superstring theory.
Book Synopsis Library of Congress Subject Headings by : Library of Congress
Download or read book Library of Congress Subject Headings written by Library of Congress and published by . This book was released on 1997 with total page 1460 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Mathematical Reports written by and published by . This book was released on 2007 with total page 420 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Tokyo Journal of Mathematics written by and published by . This book was released on 1998 with total page 536 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Mathematical Reviews written by and published by . This book was released on 2008 with total page 994 pages. Available in PDF, EPUB and Kindle. Book excerpt: