Approaching (Almost) Any Machine Learning Problem

Download Approaching (Almost) Any Machine Learning Problem PDF Online Free

Author :
Publisher : Abhishek Thakur
ISBN 13 : 8269211508
Total Pages : 300 pages
Book Rating : 4.2/5 (692 download)

DOWNLOAD NOW!


Book Synopsis Approaching (Almost) Any Machine Learning Problem by : Abhishek Thakur

Download or read book Approaching (Almost) Any Machine Learning Problem written by Abhishek Thakur and published by Abhishek Thakur. This book was released on 2020-07-04 with total page 300 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is not a traditional book. The book has a lot of code. If you don't like the code first approach do not buy this book. Making code available on Github is not an option. This book is for people who have some theoretical knowledge of machine learning and deep learning and want to dive into applied machine learning. The book doesn't explain the algorithms but is more oriented towards how and what should you use to solve machine learning and deep learning problems. The book is not for you if you are looking for pure basics. The book is for you if you are looking for guidance on approaching machine learning problems. The book is best enjoyed with a cup of coffee and a laptop/workstation where you can code along. Table of contents: - Setting up your working environment - Supervised vs unsupervised learning - Cross-validation - Evaluation metrics - Arranging machine learning projects - Approaching categorical variables - Feature engineering - Feature selection - Hyperparameter optimization - Approaching image classification & segmentation - Approaching text classification/regression - Approaching ensembling and stacking - Approaching reproducible code & model serving There are no sub-headings. Important terms are written in bold. I will be answering all your queries related to the book and will be making YouTube tutorials to cover what has not been discussed in the book. To ask questions/doubts, visit this link: https://bit.ly/aamlquestions And Subscribe to my youtube channel: https://bit.ly/abhitubesub

The Kaggle Book

Download The Kaggle Book PDF Online Free

Author :
Publisher : Packt Publishing Ltd
ISBN 13 : 1801812217
Total Pages : 531 pages
Book Rating : 4.8/5 (18 download)

DOWNLOAD NOW!


Book Synopsis The Kaggle Book by : Konrad Banachewicz

Download or read book The Kaggle Book written by Konrad Banachewicz and published by Packt Publishing Ltd. This book was released on 2022-04-22 with total page 531 pages. Available in PDF, EPUB and Kindle. Book excerpt: Get a step ahead of your competitors with insights from over 30 Kaggle Masters and Grandmasters. Discover tips, tricks, and best practices for competing effectively on Kaggle and becoming a better data scientist. Purchase of the print or Kindle book includes a free eBook in the PDF format. Key Features Learn how Kaggle works and how to make the most of competitions from over 30 expert Kagglers Sharpen your modeling skills with ensembling, feature engineering, adversarial validation and AutoML A concise collection of smart data handling techniques for modeling and parameter tuning Book DescriptionMillions of data enthusiasts from around the world compete on Kaggle, the most famous data science competition platform of them all. Participating in Kaggle competitions is a surefire way to improve your data analysis skills, network with an amazing community of data scientists, and gain valuable experience to help grow your career. The first book of its kind, The Kaggle Book assembles in one place the techniques and skills you’ll need for success in competitions, data science projects, and beyond. Two Kaggle Grandmasters walk you through modeling strategies you won’t easily find elsewhere, and the knowledge they’ve accumulated along the way. As well as Kaggle-specific tips, you’ll learn more general techniques for approaching tasks based on image, tabular, textual data, and reinforcement learning. You’ll design better validation schemes and work more comfortably with different evaluation metrics. Whether you want to climb the ranks of Kaggle, build some more data science skills, or improve the accuracy of your existing models, this book is for you. Plus, join our Discord Community to learn along with more than 1,000 members and meet like-minded people!What you will learn Get acquainted with Kaggle as a competition platform Make the most of Kaggle Notebooks, Datasets, and Discussion forums Create a portfolio of projects and ideas to get further in your career Design k-fold and probabilistic validation schemes Get to grips with common and never-before-seen evaluation metrics Understand binary and multi-class classification and object detection Approach NLP and time series tasks more effectively Handle simulation and optimization competitions on Kaggle Who this book is for This book is suitable for anyone new to Kaggle, veteran users, and anyone in between. Data analysts/scientists who are trying to do better in Kaggle competitions and secure jobs with tech giants will find this book useful. A basic understanding of machine learning concepts will help you make the most of this book.

Hands-On Exploratory Data Analysis with Python

Download Hands-On Exploratory Data Analysis with Python PDF Online Free

Author :
Publisher : Packt Publishing Ltd
ISBN 13 : 178953562X
Total Pages : 342 pages
Book Rating : 4.7/5 (895 download)

DOWNLOAD NOW!


Book Synopsis Hands-On Exploratory Data Analysis with Python by : Suresh Kumar Mukhiya

Download or read book Hands-On Exploratory Data Analysis with Python written by Suresh Kumar Mukhiya and published by Packt Publishing Ltd. This book was released on 2020-03-27 with total page 342 pages. Available in PDF, EPUB and Kindle. Book excerpt: Discover techniques to summarize the characteristics of your data using PyPlot, NumPy, SciPy, and pandas Key FeaturesUnderstand the fundamental concepts of exploratory data analysis using PythonFind missing values in your data and identify the correlation between different variablesPractice graphical exploratory analysis techniques using Matplotlib and the Seaborn Python packageBook Description Exploratory Data Analysis (EDA) is an approach to data analysis that involves the application of diverse techniques to gain insights into a dataset. This book will help you gain practical knowledge of the main pillars of EDA - data cleaning, data preparation, data exploration, and data visualization. You’ll start by performing EDA using open source datasets and perform simple to advanced analyses to turn data into meaningful insights. You’ll then learn various descriptive statistical techniques to describe the basic characteristics of data and progress to performing EDA on time-series data. As you advance, you’ll learn how to implement EDA techniques for model development and evaluation and build predictive models to visualize results. Using Python for data analysis, you’ll work with real-world datasets, understand data, summarize its characteristics, and visualize it for business intelligence. By the end of this EDA book, you’ll have developed the skills required to carry out a preliminary investigation on any dataset, yield insights into data, present your results with visual aids, and build a model that correctly predicts future outcomes. What you will learnImport, clean, and explore data to perform preliminary analysis using powerful Python packagesIdentify and transform erroneous data using different data wrangling techniquesExplore the use of multiple regression to describe non-linear relationshipsDiscover hypothesis testing and explore techniques of time-series analysisUnderstand and interpret results obtained from graphical analysisBuild, train, and optimize predictive models to estimate resultsPerform complex EDA techniques on open source datasetsWho this book is for This EDA book is for anyone interested in data analysis, especially students, statisticians, data analysts, and data scientists. The practical concepts presented in this book can be applied in various disciplines to enhance decision-making processes with data analysis and synthesis. Fundamental knowledge of Python programming and statistical concepts is all you need to get started with this book.

Python Machine Learning Case Studies

Download Python Machine Learning Case Studies PDF Online Free

Author :
Publisher : Apress
ISBN 13 : 1484228235
Total Pages : 216 pages
Book Rating : 4.4/5 (842 download)

DOWNLOAD NOW!


Book Synopsis Python Machine Learning Case Studies by : Danish Haroon

Download or read book Python Machine Learning Case Studies written by Danish Haroon and published by Apress. This book was released on 2017-10-27 with total page 216 pages. Available in PDF, EPUB and Kindle. Book excerpt: Embrace machine learning approaches and Python to enable automatic rendering of rich insights and solve business problems. The book uses a hands-on case study-based approach to crack real-world applications to which machine learning concepts can be applied. These smarter machines will enable your business processes to achieve efficiencies on minimal time and resources. Python Machine Learning Case Studies takes you through the steps to improve business processes and determine the pivotal points that frame strategies. You’ll see machine learning techniques that you can use to support your products and services. Moreover you’ll learn the pros and cons of each of the machine learning concepts to help you decide which one best suits your needs. By taking a step-by-step approach to coding in Python you’ll be able to understand the rationale behind model selection and decisions within the machine learning process. The book is equipped with practical examples along with code snippets to ensure that you understand the data science approach to solving real-world problems. What You Will Learn Gain insights into machine learning concepts Work on real-world applications of machine learning Learn concepts of model selection and optimization Get a hands-on overview of Python from a machine learning point of view Who This Book Is For Data scientists, data analysts, artificial intelligence engineers, big data enthusiasts, computer scientists, computer sciences students, and capital market analysts.

Programming PyTorch for Deep Learning

Download Programming PyTorch for Deep Learning PDF Online Free

Author :
Publisher : O'Reilly Media
ISBN 13 : 1492045322
Total Pages : 220 pages
Book Rating : 4.4/5 (92 download)

DOWNLOAD NOW!


Book Synopsis Programming PyTorch for Deep Learning by : Ian Pointer

Download or read book Programming PyTorch for Deep Learning written by Ian Pointer and published by O'Reilly Media. This book was released on 2019-09-20 with total page 220 pages. Available in PDF, EPUB and Kindle. Book excerpt: Take the next steps toward mastering deep learning, the machine learning method that’s transforming the world around us by the second. In this practical book, you’ll get up to speed on key ideas using Facebook’s open source PyTorch framework and gain the latest skills you need to create your very own neural networks. Ian Pointer shows you how to set up PyTorch on a cloud-based environment, then walks you through the creation of neural architectures that facilitate operations on images, sound, text,and more through deep dives into each element. He also covers the critical concepts of applying transfer learning to images, debugging models, and PyTorch in production. Learn how to deploy deep learning models to production Explore PyTorch use cases from several leading companies Learn how to apply transfer learning to images Apply cutting-edge NLP techniques using a model trained on Wikipedia Use PyTorch’s torchaudio library to classify audio data with a convolutional-based model Debug PyTorch models using TensorBoard and flame graphs Deploy PyTorch applications in production in Docker containers and Kubernetes clusters running on Google Cloud

Data Science from Scratch

Download Data Science from Scratch PDF Online Free

Author :
Publisher : "O'Reilly Media, Inc."
ISBN 13 : 1491904399
Total Pages : 336 pages
Book Rating : 4.4/5 (919 download)

DOWNLOAD NOW!


Book Synopsis Data Science from Scratch by : Joel Grus

Download or read book Data Science from Scratch written by Joel Grus and published by "O'Reilly Media, Inc.". This book was released on 2015-04-14 with total page 336 pages. Available in PDF, EPUB and Kindle. Book excerpt: Data science libraries, frameworks, modules, and toolkits are great for doing data science, but they’re also a good way to dive into the discipline without actually understanding data science. In this book, you’ll learn how many of the most fundamental data science tools and algorithms work by implementing them from scratch. If you have an aptitude for mathematics and some programming skills, author Joel Grus will help you get comfortable with the math and statistics at the core of data science, and with hacking skills you need to get started as a data scientist. Today’s messy glut of data holds answers to questions no one’s even thought to ask. This book provides you with the know-how to dig those answers out. Get a crash course in Python Learn the basics of linear algebra, statistics, and probability—and understand how and when they're used in data science Collect, explore, clean, munge, and manipulate data Dive into the fundamentals of machine learning Implement models such as k-nearest Neighbors, Naive Bayes, linear and logistic regression, decision trees, neural networks, and clustering Explore recommender systems, natural language processing, network analysis, MapReduce, and databases

The Hundred-page Machine Learning Book

Download The Hundred-page Machine Learning Book PDF Online Free

Author :
Publisher :
ISBN 13 : 9781999579500
Total Pages : 141 pages
Book Rating : 4.5/5 (795 download)

DOWNLOAD NOW!


Book Synopsis The Hundred-page Machine Learning Book by : Andriy Burkov

Download or read book The Hundred-page Machine Learning Book written by Andriy Burkov and published by . This book was released on 2019 with total page 141 pages. Available in PDF, EPUB and Kindle. Book excerpt: Provides a practical guide to get started and execute on machine learning within a few days without necessarily knowing much about machine learning.The first five chapters are enough to get you started and the next few chapters provide you a good feel of more advanced topics to pursue.

5,000 Awesome Facts (about Everything!)

Download 5,000 Awesome Facts (about Everything!) PDF Online Free

Author :
Publisher : National Geographic Books
ISBN 13 : 1426310498
Total Pages : 228 pages
Book Rating : 4.4/5 (263 download)

DOWNLOAD NOW!


Book Synopsis 5,000 Awesome Facts (about Everything!) by : National Geographic Kids

Download or read book 5,000 Awesome Facts (about Everything!) written by National Geographic Kids and published by National Geographic Books. This book was released on 2012 with total page 228 pages. Available in PDF, EPUB and Kindle. Book excerpt: "...Features tons of tidbits on toys and games, mysteries of history, robots and reptiles, sports and spies, wacky words, and so much more!"--T.p. verso.

Feature Engineering and Selection

Download Feature Engineering and Selection PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1351609467
Total Pages : 266 pages
Book Rating : 4.3/5 (516 download)

DOWNLOAD NOW!


Book Synopsis Feature Engineering and Selection by : Max Kuhn

Download or read book Feature Engineering and Selection written by Max Kuhn and published by CRC Press. This book was released on 2019-07-25 with total page 266 pages. Available in PDF, EPUB and Kindle. Book excerpt: The process of developing predictive models includes many stages. Most resources focus on the modeling algorithms but neglect other critical aspects of the modeling process. This book describes techniques for finding the best representations of predictors for modeling and for nding the best subset of predictors for improving model performance. A variety of example data sets are used to illustrate the techniques along with R programs for reproducing the results.

Feature Engineering for Machine Learning

Download Feature Engineering for Machine Learning PDF Online Free

Author :
Publisher : "O'Reilly Media, Inc."
ISBN 13 : 1491953195
Total Pages : 218 pages
Book Rating : 4.4/5 (919 download)

DOWNLOAD NOW!


Book Synopsis Feature Engineering for Machine Learning by : Alice Zheng

Download or read book Feature Engineering for Machine Learning written by Alice Zheng and published by "O'Reilly Media, Inc.". This book was released on 2018-03-23 with total page 218 pages. Available in PDF, EPUB and Kindle. Book excerpt: Feature engineering is a crucial step in the machine-learning pipeline, yet this topic is rarely examined on its own. With this practical book, you’ll learn techniques for extracting and transforming features—the numeric representations of raw data—into formats for machine-learning models. Each chapter guides you through a single data problem, such as how to represent text or image data. Together, these examples illustrate the main principles of feature engineering. Rather than simply teach these principles, authors Alice Zheng and Amanda Casari focus on practical application with exercises throughout the book. The closing chapter brings everything together by tackling a real-world, structured dataset with several feature-engineering techniques. Python packages including numpy, Pandas, Scikit-learn, and Matplotlib are used in code examples. You’ll examine: Feature engineering for numeric data: filtering, binning, scaling, log transforms, and power transforms Natural text techniques: bag-of-words, n-grams, and phrase detection Frequency-based filtering and feature scaling for eliminating uninformative features Encoding techniques of categorical variables, including feature hashing and bin-counting Model-based feature engineering with principal component analysis The concept of model stacking, using k-means as a featurization technique Image feature extraction with manual and deep-learning techniques

A First Course in Machine Learning

Download A First Course in Machine Learning PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1498738540
Total Pages : 428 pages
Book Rating : 4.4/5 (987 download)

DOWNLOAD NOW!


Book Synopsis A First Course in Machine Learning by : Simon Rogers

Download or read book A First Course in Machine Learning written by Simon Rogers and published by CRC Press. This book was released on 2016-10-14 with total page 428 pages. Available in PDF, EPUB and Kindle. Book excerpt: Introduces the main algorithms and ideas that underpin machine learning techniques and applications Keeps mathematical prerequisites to a minimum, providing mathematical explanations in comment boxes and highlighting important equations Covers modern machine learning research and techniques Includes three new chapters on Markov Chain Monte Carlo techniques, Classification and Regression with Gaussian Processes, and Dirichlet Process models Offers Python, R, and MATLAB code on accompanying website: http://www.dcs.gla.ac.uk/~srogers/firstcourseml/"

Applied Predictive Modeling

Download Applied Predictive Modeling PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1461468493
Total Pages : 595 pages
Book Rating : 4.4/5 (614 download)

DOWNLOAD NOW!


Book Synopsis Applied Predictive Modeling by : Max Kuhn

Download or read book Applied Predictive Modeling written by Max Kuhn and published by Springer Science & Business Media. This book was released on 2013-05-17 with total page 595 pages. Available in PDF, EPUB and Kindle. Book excerpt: Applied Predictive Modeling covers the overall predictive modeling process, beginning with the crucial steps of data preprocessing, data splitting and foundations of model tuning. The text then provides intuitive explanations of numerous common and modern regression and classification techniques, always with an emphasis on illustrating and solving real data problems. The text illustrates all parts of the modeling process through many hands-on, real-life examples, and every chapter contains extensive R code for each step of the process. This multi-purpose text can be used as an introduction to predictive models and the overall modeling process, a practitioner’s reference handbook, or as a text for advanced undergraduate or graduate level predictive modeling courses. To that end, each chapter contains problem sets to help solidify the covered concepts and uses data available in the book’s R package. This text is intended for a broad audience as both an introduction to predictive models as well as a guide to applying them. Non-mathematical readers will appreciate the intuitive explanations of the techniques while an emphasis on problem-solving with real data across a wide variety of applications will aid practitioners who wish to extend their expertise. Readers should have knowledge of basic statistical ideas, such as correlation and linear regression analysis. While the text is biased against complex equations, a mathematical background is needed for advanced topics.

Automated Machine Learning for Business

Download Automated Machine Learning for Business PDF Online Free

Author :
Publisher : Oxford University Press
ISBN 13 : 0190941650
Total Pages : 353 pages
Book Rating : 4.1/5 (99 download)

DOWNLOAD NOW!


Book Synopsis Automated Machine Learning for Business by : Kai R. Larsen

Download or read book Automated Machine Learning for Business written by Kai R. Larsen and published by Oxford University Press. This book was released on 2021 with total page 353 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book teaches the full process of how to conduct machine learning in an organizational setting. It develops the problem-solving mind-set needed for machine learning and takes the reader through several exercises using an automated machine learning tool. To build experience with machine learning, the book provides access to the industry-leading AutoML tool, DataRobot, and provides several data sets designed to build deep hands-on knowledge of machinelearning.

Deep Learning for Coders with fastai and PyTorch

Download Deep Learning for Coders with fastai and PyTorch PDF Online Free

Author :
Publisher : O'Reilly Media
ISBN 13 : 1492045497
Total Pages : 624 pages
Book Rating : 4.4/5 (92 download)

DOWNLOAD NOW!


Book Synopsis Deep Learning for Coders with fastai and PyTorch by : Jeremy Howard

Download or read book Deep Learning for Coders with fastai and PyTorch written by Jeremy Howard and published by O'Reilly Media. This book was released on 2020-06-29 with total page 624 pages. Available in PDF, EPUB and Kindle. Book excerpt: Deep learning is often viewed as the exclusive domain of math PhDs and big tech companies. But as this hands-on guide demonstrates, programmers comfortable with Python can achieve impressive results in deep learning with little math background, small amounts of data, and minimal code. How? With fastai, the first library to provide a consistent interface to the most frequently used deep learning applications. Authors Jeremy Howard and Sylvain Gugger, the creators of fastai, show you how to train a model on a wide range of tasks using fastai and PyTorch. You’ll also dive progressively further into deep learning theory to gain a complete understanding of the algorithms behind the scenes. Train models in computer vision, natural language processing, tabular data, and collaborative filtering Learn the latest deep learning techniques that matter most in practice Improve accuracy, speed, and reliability by understanding how deep learning models work Discover how to turn your models into web applications Implement deep learning algorithms from scratch Consider the ethical implications of your work Gain insight from the foreword by PyTorch cofounder, Soumith Chintala

Machine Learning Bookcamp

Download Machine Learning Bookcamp PDF Online Free

Author :
Publisher : Simon and Schuster
ISBN 13 : 1617296813
Total Pages : 470 pages
Book Rating : 4.6/5 (172 download)

DOWNLOAD NOW!


Book Synopsis Machine Learning Bookcamp by : Alexey Grigorev

Download or read book Machine Learning Bookcamp written by Alexey Grigorev and published by Simon and Schuster. This book was released on 2021-11-23 with total page 470 pages. Available in PDF, EPUB and Kindle. Book excerpt: The only way to learn is to practice! In Machine Learning Bookcamp, you''ll create and deploy Python-based machine learning models for a variety of increasingly challenging projects. Taking you from the basics of machine learning to complex applications such as image and text analysis, each new project builds on what you''ve learned in previous chapters. By the end of the bookcamp, you''ll have built a portfolio of business-relevant machine learning projects that hiring managers will be excited to see. about the technology Machine learning is an analysis technique for predicting trends and relationships based on historical data. As ML has matured as a discipline, an established set of algorithms has emerged for tackling a wide range of analysis tasks in business and research. By practicing the most important algorithms and techniques, you can quickly gain a footing in this important area. Luckily, that''s exactly what you''ll be doing in Machine Learning Bookcamp. about the book In Machine Learning Bookcamp you''ll learn the essentials of machine learning by completing a carefully designed set of real-world projects. Beginning as a novice, you''ll start with the basic concepts of ML before tackling your first challenge: creating a car price predictor using linear regression algorithms. You''ll then advance through increasingly difficult projects, developing your skills to build a churn prediction application, a flight delay calculator, an image classifier, and more. When you''re done working through these fun and informative projects, you''ll have a comprehensive machine learning skill set you can apply to practical on-the-job problems. what''s inside Code fundamental ML algorithms from scratch Collect and clean data for training models Use popular Python tools, including NumPy, Pandas, Scikit-Learn, and TensorFlow Apply ML to complex datasets with images and text Deploy ML models to a production-ready environment about the reader For readers with existing programming skills. No previous machine learning experience required. about the author Alexey Grigorev has more than ten years of experience as a software engineer, and has spent the last six years focused on machine learning. Currently, he works as a lead data scientist at the OLX Group, where he deals with content moderation and image models. He is the author of two other books on using Java for data science and TensorFlow for deep learning.

Doing Data Science

Download Doing Data Science PDF Online Free

Author :
Publisher : "O'Reilly Media, Inc."
ISBN 13 : 144936389X
Total Pages : 320 pages
Book Rating : 4.4/5 (493 download)

DOWNLOAD NOW!


Book Synopsis Doing Data Science by : Cathy O'Neil

Download or read book Doing Data Science written by Cathy O'Neil and published by "O'Reilly Media, Inc.". This book was released on 2013-10-09 with total page 320 pages. Available in PDF, EPUB and Kindle. Book excerpt: Now that people are aware that data can make the difference in an election or a business model, data science as an occupation is gaining ground. But how can you get started working in a wide-ranging, interdisciplinary field that’s so clouded in hype? This insightful book, based on Columbia University’s Introduction to Data Science class, tells you what you need to know. In many of these chapter-long lectures, data scientists from companies such as Google, Microsoft, and eBay share new algorithms, methods, and models by presenting case studies and the code they use. If you’re familiar with linear algebra, probability, and statistics, and have programming experience, this book is an ideal introduction to data science. Topics include: Statistical inference, exploratory data analysis, and the data science process Algorithms Spam filters, Naive Bayes, and data wrangling Logistic regression Financial modeling Recommendation engines and causality Data visualization Social networks and data journalism Data engineering, MapReduce, Pregel, and Hadoop Doing Data Science is collaboration between course instructor Rachel Schutt, Senior VP of Data Science at News Corp, and data science consultant Cathy O’Neil, a senior data scientist at Johnson Research Labs, who attended and blogged about the course.

The Data Science Design Manual

Download The Data Science Design Manual PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3319554441
Total Pages : 456 pages
Book Rating : 4.3/5 (195 download)

DOWNLOAD NOW!


Book Synopsis The Data Science Design Manual by : Steven S. Skiena

Download or read book The Data Science Design Manual written by Steven S. Skiena and published by Springer. This book was released on 2017-07-01 with total page 456 pages. Available in PDF, EPUB and Kindle. Book excerpt: This engaging and clearly written textbook/reference provides a must-have introduction to the rapidly emerging interdisciplinary field of data science. It focuses on the principles fundamental to becoming a good data scientist and the key skills needed to build systems for collecting, analyzing, and interpreting data. The Data Science Design Manual is a source of practical insights that highlights what really matters in analyzing data, and provides an intuitive understanding of how these core concepts can be used. The book does not emphasize any particular programming language or suite of data-analysis tools, focusing instead on high-level discussion of important design principles. This easy-to-read text ideally serves the needs of undergraduate and early graduate students embarking on an “Introduction to Data Science” course. It reveals how this discipline sits at the intersection of statistics, computer science, and machine learning, with a distinct heft and character of its own. Practitioners in these and related fields will find this book perfect for self-study as well. Additional learning tools: Contains “War Stories,” offering perspectives on how data science applies in the real world Includes “Homework Problems,” providing a wide range of exercises and projects for self-study Provides a complete set of lecture slides and online video lectures at www.data-manual.com Provides “Take-Home Lessons,” emphasizing the big-picture concepts to learn from each chapter Recommends exciting “Kaggle Challenges” from the online platform Kaggle Highlights “False Starts,” revealing the subtle reasons why certain approaches fail Offers examples taken from the data science television show “The Quant Shop” (www.quant-shop.com)