Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
The Isomonodromic Deformation Method In The Theory Of Painleve Equations
Download The Isomonodromic Deformation Method In The Theory Of Painleve Equations full books in PDF, epub, and Kindle. Read online The Isomonodromic Deformation Method In The Theory Of Painleve Equations ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis The Isomonodromic Deformation Method in the Theory of Painleve Equations by : Alexander R. Its
Download or read book The Isomonodromic Deformation Method in the Theory of Painleve Equations written by Alexander R. Its and published by Springer. This book was released on 2006-11-14 with total page 318 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis The Isomonodromic Deformation Method in the Theory of Painlevé Equations by : Alexander R. Its
Download or read book The Isomonodromic Deformation Method in the Theory of Painlevé Equations written by Alexander R. Its and published by Springer. This book was released on 1986 with total page 338 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis The Painlevé Property by : Robert Conte
Download or read book The Painlevé Property written by Robert Conte and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 828 pages. Available in PDF, EPUB and Kindle. Book excerpt: The subject this volume is explicit integration, that is, the analytical as opposed to the numerical solution, of all kinds of nonlinear differential equations (ordinary differential, partial differential, finite difference). Such equations describe many physical phenomena, their analytic solutions (particular solutions, first integral, and so forth) are in many cases preferable to numerical computation, which may be long, costly and, worst, subject to numerical errors. In addition, the analytic approach can provide a global knowledge of the solution, while the numerical approach is always local. Explicit integration is based on the powerful methods based on an in-depth study of singularities, that were first used by Poincar and subsequently developed by Painlev in his famous Leons de Stockholm of 1895. The recent interest in the subject and in the equations investigated by Painlev dates back about thirty years ago, arising from three, apparently disjoint, fields: the Ising model of statistical physics and field theory, propagation of solitons, and dynamical systems. The chapters in this volume, based on courses given at Cargse 1998, alternate mathematics and physics; they are intended to bring researchers entering the field to the level of present research.
Book Synopsis Painleve Equations in the Differential Geometry of Surfaces by : Alexander I. Bobenko TU Berlin
Download or read book Painleve Equations in the Differential Geometry of Surfaces written by Alexander I. Bobenko TU Berlin and published by Springer. This book was released on 2003-07-01 with total page 125 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book brings together two different branches of mathematics: the theory of Painlev and the theory of surfaces. Self-contained introductions to both these fields are presented. It is shown how some classical problems in surface theory can be solved using the modern theory of Painlev equations. In particular, an essential part of the book is devoted to Bonnet surfaces, i.e. to surfaces possessing families of isometries preserving the mean curvature function. A global classification of Bonnet surfaces is given using both ingredients of the theory of Painlev equations: the theory of isomonodromic deformation and the Painlev property. The book is illustrated by plots of surfaces. It is intended to be used by mathematicians and graduate students interested in differential geometry and Painlev equations. Researchers working in one of these areas can become familiar with another relevant branch of mathematics.
Book Synopsis Painlevé Transcendents by : Decio Levi
Download or read book Painlevé Transcendents written by Decio Levi and published by Springer Science & Business Media. This book was released on 2013-11-11 with total page 454 pages. Available in PDF, EPUB and Kindle. Book excerpt: The NATO Advanced Research Workshop "Painleve Transcendents, their Asymp totics and Physical Applications", held at the Alpine Inn in Sainte-Adele, near Montreal, September 2 -7, 1990, brought together a group of experts to discuss the topic and produce this volume. There were 41 participants from 14 countries and 27 lectures were presented, all included in this volume. The speakers presented reviews of topics to which they themselves have made important contributions and also re sults of new original research. The result is a volume which, though multiauthored, has the character of a monograph on a single topic. This is the theory of nonlinear ordinary differential equations, the solutions of which have no movable singularities, other than poles, and the extension of this theory to partial differential equations. For short we shall call such systems "equations with the Painleve property". The search for such equations was a very topical mathematical problem in the 19th century. Early work concentrated on first order differential equations. One of Painleve's important contributions in this field was to develop simple methods applicable to higher order equations. In particular these methods made possible a complete analysis of the equation ;; = f(y',y,x), where f is a rational function of y' and y, with coefficients that are analytic in x. The fundamental result due to Painleve (Acta Math.
Author :Alexander I. Bobenko TU Berlin Publisher :Springer Science & Business Media ISBN 13 :3764386215 Total Pages :341 pages Book Rating :4.7/5 (643 download)
Book Synopsis Discrete Differential Geometry by : Alexander I. Bobenko TU Berlin
Download or read book Discrete Differential Geometry written by Alexander I. Bobenko TU Berlin and published by Springer Science & Business Media. This book was released on 2008-03-27 with total page 341 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is the first book on a newly emerging field of discrete differential geometry providing an excellent way to access this exciting area. It provides discrete equivalents of the geometric notions and methods of differential geometry, such as notions of curvature and integrability for polyhedral surfaces. The carefully edited collection of essays gives a lively, multi-facetted introduction to this emerging field.
Book Synopsis Isomonodromic Deformations and Frobenius Manifolds by : Claude Sabbah
Download or read book Isomonodromic Deformations and Frobenius Manifolds written by Claude Sabbah and published by Springer Science & Business Media. This book was released on 2007-12-20 with total page 290 pages. Available in PDF, EPUB and Kindle. Book excerpt: Based on a series of graduate lectures, this book provides an introduction to algebraic geometric methods in the theory of complex linear differential equations. Starting from basic notions in complex algebraic geometry, it develops some of the classical problems of linear differential equations. It ends with applications to recent research questions related to mirror symmetry. The fundamental tool used is that of a vector bundle with connection. The book includes complete proofs, and applications to recent research questions. Aimed at graduate students and researchers, the book assumes some familiarity with basic complex algebraic geometry.
Book Synopsis Integrable Quantum Field Theories by : L. Bonora
Download or read book Integrable Quantum Field Theories written by L. Bonora and published by Springer Science & Business Media. This book was released on 2013-11-11 with total page 330 pages. Available in PDF, EPUB and Kindle. Book excerpt: Proceedings of a NATO ARW held in Como, Italy, September 14-19, 1992
Book Synopsis Handbook of Differential Equations: Ordinary Differential Equations by : Flaviano Battelli
Download or read book Handbook of Differential Equations: Ordinary Differential Equations written by Flaviano Battelli and published by Elsevier. This book was released on 2008-08-19 with total page 719 pages. Available in PDF, EPUB and Kindle. Book excerpt: This handbook is the fourth volume in a series of volumes devoted to self-contained and up-to-date surveys in the theory of ordinary differential equations, with an additional effort to achieve readability for mathematicians and scientists from other related fields so that the chapters have been made accessible to a wider audience. - Covers a variety of problems in ordinary differential equations - Pure mathematical and real-world applications - Written for mathematicians and scientists of many related fields
Book Synopsis Isomonodromic Deformations and Applications in Physics by : John P. Harnad
Download or read book Isomonodromic Deformations and Applications in Physics written by John P. Harnad and published by American Mathematical Soc.. This book was released on 2002 with total page 236 pages. Available in PDF, EPUB and Kindle. Book excerpt: The area of inverse scattering transform method or soliton theory has evolved over the past two decades in a vast variety of exciting new algebraic and analytic directions and has found numerous new applications. Methods and applications range from quantum group theory and exactly solvable statistical models to random matrices, random permutations, and number theory. The theory of isomonodromic deformations of systems of differential equations with rational coefficents, and mostnotably, the related apparatus of the Riemann-Hilbert problem, underlie the analytic side of this striking development. The contributions in this volume are based on lectures given by leading experts at the CRM workshop (Montreal, Canada). Included are both survey articles and more detailed expositionsrelating to the theory of isomonodromic deformations, the Riemann-Hilbert problem, and modern applications. The first part of the book represents the mathematical aspects of isomonodromic deformations; the second part deals mostly with the various appearances of isomonodromic deformations and Riemann-Hilbert methods in the theory of exactly solvable quantum field theory and statistical mechanical models, and related issues. The book elucidates for the first time in the current literature theimportant role that isomonodromic deformations play in the theory of integrable systems and their applications to physics.
Book Synopsis Planar Ising Correlations by : John Palmer
Download or read book Planar Ising Correlations written by John Palmer and published by Springer Science & Business Media. This book was released on 2007-06-15 with total page 377 pages. Available in PDF, EPUB and Kindle. Book excerpt: Steady progress in recent years has been made in understanding the special mathematical features of certain exactly solvable models in statistical mechanics and quantum field theory, including the scaling limits of the 2-D Ising (lattice) model, and more generally, a class of 2-D quantum fields known as holonomic fields. New results have made it possible to obtain a detailed nonperturbative analysis of the multi-spin correlations. In particular, the book focuses on deformation analysis of the scaling functions of the Ising model, and will appeal to graduate students, mathematicians, and physicists interested in the mathematics of statistical mechanics and quantum field theory.
Book Synopsis Integrable Systems and Quantum Groups by : Ron Donagi
Download or read book Integrable Systems and Quantum Groups written by Ron Donagi and published by Springer. This book was released on 2006-11-14 with total page 496 pages. Available in PDF, EPUB and Kindle. Book excerpt: The aim of this CIME Session was to review the state of the art in the recent development of the theory of integrable systems and their relations with quantum groups. The purpose was to gather geometers and mathematical physicists to allow a broader and more complete view of these attractive and rapidly developing fields. The papers contained in this volume have at the same time the character of survey articles and of research papers, since they contain both a survey of current problems and a number of original contributions to the subject.
Download or read book Integrable Systems written by V. Babelon and published by Springer Science & Business Media. This book was released on 2013-03-14 with total page 368 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book constitutes the proceedings of the International Conference on Integrable Systems in memory of J.-L. Verdier. It was held on July 1-5, 1991 at the Centre International de Recherches Mathematiques (C.I.R.M.) at Luminy, near Marseille (France). This collection of articles, covering many aspects of the theory of integrable Hamiltonian systems, both finite and infinite-dimensional, with an emphasis on the algebro-geometric meth ods, is published here as a tribute to Verdier who had planned this confer ence before his death in 1989 and whose active involvement with this topic brought integrable systems to the fore as a subject for active research in France. The death of Verdier and his wife on August 25, 1989, in a car accident near their country house, was a shock to all of us who were acquainted with them, and was very deeply felt in the mathematics community. We knew of no better way to honor Verdier's memory than to proceed with both the School on Integrable Systems at the C.I.M.P.A. (Centre International de Mathematiques Pures et Appliquees in Nice), and the Conference on the same theme that was to follow it, as he himself had planned them.
Book Synopsis Applied Asymptotic Analysis by : Peter David Miller
Download or read book Applied Asymptotic Analysis written by Peter David Miller and published by American Mathematical Soc.. This book was released on 2006 with total page 488 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is a survey of asymptotic methods set in the current applied research context of wave propagation. It stresses rigorous analysis in addition to formal manipulations. Asymptotic expansions developed in the text are justified rigorously, and students are shown how to obtain solid error estimates for asymptotic formulae. The book relates examples and exercises to subjects of current research interest, such as the problem of locating the zeros of Taylor polynomials of entirenonvanishing functions and the problem of counting integer lattice points in subsets of the plane with various geometrical properties of the boundary. The book is intended for a beginning graduate course on asymptotic analysis in applied mathematics and is aimed at students of pure and appliedmathematics as well as science and engineering. The basic prerequisite is a background in differential equations, linear algebra, advanced calculus, and complex variables at the level of introductory undergraduate courses on these subjects. The book is ideally suited to the needs of a graduate student who, on the one hand, wants to learn basic applied mathematics, and on the other, wants to understand what is needed to make the various arguments rigorous. Down here in the Village, this is knownas the Courant point of view!! --Percy Deift, Courant Institute, New York Peter D. Miller is an associate professor of mathematics at the University of Michigan at Ann Arbor. He earned a Ph.D. in Applied Mathematics from the University of Arizona and has held positions at the Australian NationalUniversity (Canberra) and Monash University (Melbourne). His current research interests lie in singular limits for integrable systems.
Book Synopsis Padé Methods for Painlevé Equations by : Hidehito Nagao
Download or read book Padé Methods for Painlevé Equations written by Hidehito Nagao and published by Springer Nature. This book was released on 2021-09-01 with total page 94 pages. Available in PDF, EPUB and Kindle. Book excerpt: The isomonodromic deformation equations such as the Painlevé and Garnier systems are an important class of nonlinear differential equations in mathematics and mathematical physics. For discrete analogs of these equations in particular, much progress has been made in recent decades. Various approaches to such isomonodromic equations are known: the Painlevé test/Painlevé property, reduction of integrable hierarchy, the Lax formulation, algebro-geometric methods, and others. Among them, the Padé method explained in this book provides a simple approach to those equations in both continuous and discrete cases. For a given function f(x), the Padé approximation/interpolation supplies the rational functions P(x), Q(x) as approximants such as f(x)~P(x)/Q(x). The basic idea of the Padé method is to consider the linear differential (or difference) equations satisfied by P(x) and f(x)Q(x). In choosing the suitable approximation problem, the linear differential equations give the Lax pair for some isomonodromic equations. Although this relation between the isomonodromic equations and Padé approximations has been known classically, a systematic study including discrete cases has been conducted only recently. By this simple and easy procedure, one can simultaneously obtain various results such as the nonlinear evolution equation, its Lax pair, and their special solutions. In this way, the method is a convenient means of approaching the isomonodromic deformation equations.
Book Synopsis Discrete Integrable Geometry and Physics by : Alexander I. Bobenko
Download or read book Discrete Integrable Geometry and Physics written by Alexander I. Bobenko and published by Clarendon Press. This book was released on 1999 with total page 466 pages. Available in PDF, EPUB and Kindle. Book excerpt: Recent interactions between the fields of geometry, classical and quantum dynamical systems, and visualization of geometric objects such as curves and surfaces have led to the observation that most concepts of surface theory and of the theory of integrable systems have natural discreteanalogues. These are characterized by the property that the corresponding difference equations are integrable, and has led in turn to some important applications in areas of condensed matter physics and quantum field theory, amongst others. The book combines the efforts of a distinguished team ofauthors from various fields in mathematics and physics in an effort to provide an overview of the subject. The mathematical concepts of discrete geometry and discrete integrable systems are firstly presented as fundamental and valuable theories in themselves. In the following part these concepts areput into the context of classical and quantum dynamics.
Download or read book Solitons written by Boling Guo and published by Walter de Gruyter GmbH & Co KG. This book was released on 2018-03-19 with total page 376 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides an up-to-date overview of mathematical theories and research results on solitons, presenting related mathematical methods and applications as well as numerical experiments. Different types of soliton equations are covered along with their dynamical behaviors and applications from physics, making the book an essential reference for researchers and graduate students in applied mathematics and physics. Contents Introduction Inverse scattering transform Asymptotic behavior to initial value problems for some integrable evolution nonlinear equations Interaction of solitons and its asymptotic properties Hirota method Bäcklund transformations and the infinitely many conservation laws Multi-dimensional solitons and their stability Numerical computation methods for some nonlinear evolution equations The geometric theory of solitons Global existence and blow up for the nonlinear evolution equations The soliton movements of elementary particles in nonlinear quantum field The theory of soliton movement of superconductive features The soliton movements in condensed state systemsontents