Author : Reid Milstead
Publisher :
ISBN 13 :
Total Pages : 0 pages
Book Rating : 4.:/5 (14 download)
Book Synopsis The Influence of Dissolved Organic Matter Composition on Its Reactivity in Natural and Engineered Systems by : Reid Milstead
Download or read book The Influence of Dissolved Organic Matter Composition on Its Reactivity in Natural and Engineered Systems written by Reid Milstead and published by . This book was released on 2023 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Dissolved organic matter (DOM) is a complex heterogeneous mixture of organic compounds that is found in all water systems. DOM is derived from both terrestrial and microbial sources. The composition of DOM can vary greatly depending on a number of variables, including time of year, surrounding groundcover type, and water column depth. The characterization of DOM composition is increasingly performed using high-resolution mass spectrometry, although different instrumentation and techniques may yield different results. Importantly, DOM plays a key role in a number of chemical processes in both natural and engineered systems, such as the generation of carbon dioxide (CO2) from surface waters, the degradation of aquatic contaminants, and the formation of disinfection byproducts (DBPs) during drinking water treatment. The composition of DOM determines its reactivity in all of these processes. Using both bulk and high-resolution analytical techniques, the photooxidation of DOM can be explored. DOM compounds that are more oxidized and aromatic tend to be associated with the consumption of oxygen and the production of CO2. Bulk scale measurements show that DOM becomes less aromatic and lower in molecular weight as a result of partial photooxidation. High-resolution mass spectrometry also provides evidence of oxygen addition and the loss of CO2 from DOM during irradiation experiments. However, the chemical formulas that are most photolabile vary depending on the initial composition of DOM. Using light exposure experiments the kinetics of degradation of four contaminants were quantified for a large set of diverse waters. Using this information, we evaluated the relationships between indirect photolysis rate constants and the formation of photochemically produced reactive intermediates (PPRI) using linear regression analysis. Additionally, quencher experiments were performed to identify the PPRI associated with the degradation of each contaminant in all waters. Triplet state DOM (3DOM) and singlet oxygen (1O2) were identified as critical for atorvastatin, carbamazepine, and sulfadiazine, while hydroxyl radical (•OH) is important for benzotriazole. Our results suggest that quenching experiments should be used with caution due to the non-targeted nature of quenching compounds and the interconnection of PPRI. All of these factors result in probe compounds possibly overstating the importance of PPRI in the indirect photolysis of common contaminants. The characterization of DOM in drinking waters reveals a high degree of variability in DOM composition and reactivity with chlorine, particularly in groundwater samples. Despite the variability in DOM composition, novel DBPs with up to three halogen substituents are compositionally similar among all waters. These novel DBPs are positively correlated with trihalomethane and, to a lesser extent, the formation of haloacetonitriles. This suggests that some low molecular weight DBPs and novel DBPs detected via high-resolution mass spectrometry share similar aromatic precursors, providing evidence that low molecular weight DBPs are useful proxies for the formation of unknown, unidentified high molecular weight DBPs. Compared to Fourier transform-ion cyclotron resonance mass spectrometry (FT-ICR MS), Orbitrap MS yields significantly fewer formula matches and appears to have a bias towards sulfur-containing formulas and against nitrogen-containing formulas. Additionally, the choice of calibration method is particularly important for the less powerful Orbitrap MS. The matched formulas yielded from Orbitrap MS tend to be more oxidized and less highly saturated than those yielded by FT-ICR MS. Despite these differences, the formulas produced by both instruments tend to yield similar relative differences between samples, suggesting that Orbitrap MS is an acceptable replacement for FT-ICR MS in some cases.