Symplectic Geometric Algorithms for Hamiltonian Systems

Download Symplectic Geometric Algorithms for Hamiltonian Systems PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 3642017770
Total Pages : 690 pages
Book Rating : 4.6/5 (42 download)

DOWNLOAD NOW!


Book Synopsis Symplectic Geometric Algorithms for Hamiltonian Systems by : Kang Feng

Download or read book Symplectic Geometric Algorithms for Hamiltonian Systems written by Kang Feng and published by Springer Science & Business Media. This book was released on 2010-10-18 with total page 690 pages. Available in PDF, EPUB and Kindle. Book excerpt: "Symplectic Geometric Algorithms for Hamiltonian Systems" will be useful not only for numerical analysts, but also for those in theoretical physics, computational chemistry, celestial mechanics, etc. The book generalizes and develops the generating function and Hamilton-Jacobi equation theory from the perspective of the symplectic geometry and symplectic algebra. It will be a useful resource for engineers and scientists in the fields of quantum theory, astrophysics, atomic and molecular dynamics, climate prediction, oil exploration, etc. Therefore a systematic research and development of numerical methodology for Hamiltonian systems is well motivated. Were it successful, it would imply wide-ranging applications.

Integrable Hamiltonian Systems

Download Integrable Hamiltonian Systems PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 0203643429
Total Pages : 747 pages
Book Rating : 4.2/5 (36 download)

DOWNLOAD NOW!


Book Synopsis Integrable Hamiltonian Systems by : A.V. Bolsinov

Download or read book Integrable Hamiltonian Systems written by A.V. Bolsinov and published by CRC Press. This book was released on 2004-02-25 with total page 747 pages. Available in PDF, EPUB and Kindle. Book excerpt: Integrable Hamiltonian systems have been of growing interest over the past 30 years and represent one of the most intriguing and mysterious classes of dynamical systems. This book explores the topology of integrable systems and the general theory underlying their qualitative properties, singularites, and topological invariants. The authors,

Symplectic Geometry of Integrable Hamiltonian Systems

Download Symplectic Geometry of Integrable Hamiltonian Systems PDF Online Free

Author :
Publisher : Birkhäuser
ISBN 13 : 3034880715
Total Pages : 225 pages
Book Rating : 4.0/5 (348 download)

DOWNLOAD NOW!


Book Synopsis Symplectic Geometry of Integrable Hamiltonian Systems by : Michèle Audin

Download or read book Symplectic Geometry of Integrable Hamiltonian Systems written by Michèle Audin and published by Birkhäuser. This book was released on 2012-12-06 with total page 225 pages. Available in PDF, EPUB and Kindle. Book excerpt: Among all the Hamiltonian systems, the integrable ones have special geometric properties; in particular, their solutions are very regular and quasi-periodic. This book serves as an introduction to symplectic and contact geometry for graduate students, exploring the underlying geometry of integrable Hamiltonian systems. Includes exercises designed to complement the expositiont, and up-to-date references.

Differential Geometry and Mathematical Physics

Download Differential Geometry and Mathematical Physics PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 9400753454
Total Pages : 766 pages
Book Rating : 4.4/5 (7 download)

DOWNLOAD NOW!


Book Synopsis Differential Geometry and Mathematical Physics by : Gerd Rudolph

Download or read book Differential Geometry and Mathematical Physics written by Gerd Rudolph and published by Springer Science & Business Media. This book was released on 2012-11-09 with total page 766 pages. Available in PDF, EPUB and Kindle. Book excerpt: Starting from an undergraduate level, this book systematically develops the basics of • Calculus on manifolds, vector bundles, vector fields and differential forms, • Lie groups and Lie group actions, • Linear symplectic algebra and symplectic geometry, • Hamiltonian systems, symmetries and reduction, integrable systems and Hamilton-Jacobi theory. The topics listed under the first item are relevant for virtually all areas of mathematical physics. The second and third items constitute the link between abstract calculus and the theory of Hamiltonian systems. The last item provides an introduction to various aspects of this theory, including Morse families, the Maslov class and caustics. The book guides the reader from elementary differential geometry to advanced topics in the theory of Hamiltonian systems with the aim of making current research literature accessible. The style is that of a mathematical textbook,with full proofs given in the text or as exercises. The material is illustrated by numerous detailed examples, some of which are taken up several times for demonstrating how the methods evolve and interact.

The Geometry of Hamiltonian Systems

Download The Geometry of Hamiltonian Systems PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1461397251
Total Pages : 526 pages
Book Rating : 4.4/5 (613 download)

DOWNLOAD NOW!


Book Synopsis The Geometry of Hamiltonian Systems by : Tudor Ratiu

Download or read book The Geometry of Hamiltonian Systems written by Tudor Ratiu and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 526 pages. Available in PDF, EPUB and Kindle. Book excerpt: The papers in this volume are an outgrowth of the lectures and informal discussions that took place during the workshop on "The Geometry of Hamiltonian Systems" which was held at MSRl from June 5 to 16, 1989. It was, in some sense, the last major event of the year-long program on Symplectic Geometry and Mechanics. The emphasis of all the talks was on Hamiltonian dynamics and its relationship to several aspects of symplectic geometry and topology, mechanics, and dynamical systems in general. The organizers of the conference were R. Devaney (co-chairman), H. Flaschka (co-chairman), K. Meyer, and T. Ratiu. The entire meeting was built around two mini-courses of five lectures each and a series of two expository lectures. The first of the mini-courses was given by A. T. Fomenko, who presented the work of his group at Moscow University on the classification of integrable systems. The second mini course was given by J. Marsden of UC Berkeley, who spoke about several applications of symplectic and Poisson reduction to problems in stability, normal forms, and symmetric Hamiltonian bifurcation theory. Finally, the two expository talks were given by A. Fathi of the University of Florida who concentrated on the links between symplectic geometry, dynamical systems, and Teichmiiller theory.

The Geometry of Hamilton and Lagrange Spaces

Download The Geometry of Hamilton and Lagrange Spaces PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 0306471353
Total Pages : 355 pages
Book Rating : 4.3/5 (64 download)

DOWNLOAD NOW!


Book Synopsis The Geometry of Hamilton and Lagrange Spaces by : R. Miron

Download or read book The Geometry of Hamilton and Lagrange Spaces written by R. Miron and published by Springer Science & Business Media. This book was released on 2006-04-11 with total page 355 pages. Available in PDF, EPUB and Kindle. Book excerpt: The title of this book is no surprise for people working in the field of Analytical Mechanics. However, the geometric concepts of Lagrange space and Hamilton space are completely new. The geometry of Lagrange spaces, introduced and studied in [76],[96], was ext- sively examined in the last two decades by geometers and physicists from Canada, Germany, Hungary, Italy, Japan, Romania, Russia and U.S.A. Many international conferences were devoted to debate this subject, proceedings and monographs were published [10], [18], [112], [113],... A large area of applicability of this geometry is suggested by the connections to Biology, Mechanics, and Physics and also by its general setting as a generalization of Finsler and Riemannian geometries. The concept of Hamilton space, introduced in [105], [101] was intensively studied in [63], [66], [97],... and it has been successful, as a geometric theory of the Ham- tonian function the fundamental entity in Mechanics and Physics. The classical Legendre’s duality makes possible a natural connection between Lagrange and - miltonspaces. It reveals new concepts and geometrical objects of Hamilton spaces that are dual to those which are similar in Lagrange spaces. Following this duality Cartan spaces introduced and studied in [98], [99],..., are, roughly speaking, the Legendre duals of certain Finsler spaces [98], [66], [67]. The above arguments make this monograph a continuation of [106], [113], emphasizing the Hamilton geometry.

Introduction to Hamiltonian Dynamical Systems and the N-Body Problem

Download Introduction to Hamiltonian Dynamical Systems and the N-Body Problem PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3319536915
Total Pages : 389 pages
Book Rating : 4.3/5 (195 download)

DOWNLOAD NOW!


Book Synopsis Introduction to Hamiltonian Dynamical Systems and the N-Body Problem by : Kenneth R. Meyer

Download or read book Introduction to Hamiltonian Dynamical Systems and the N-Body Problem written by Kenneth R. Meyer and published by Springer. This book was released on 2017-05-04 with total page 389 pages. Available in PDF, EPUB and Kindle. Book excerpt: This third edition text provides expanded material on the restricted three body problem and celestial mechanics. With each chapter containing new content, readers are provided with new material on reduction, orbifolds, and the regularization of the Kepler problem, all of which are provided with applications. The previous editions grew out of graduate level courses in mathematics, engineering, and physics given at several different universities. The courses took students who had some background in differential equations and lead them through a systematic grounding in the theory of Hamiltonian mechanics from a dynamical systems point of view. This text provides a mathematical structure of celestial mechanics ideal for beginners, and will be useful to graduate students and researchers alike. Reviews of the second edition: "The primary subject here is the basic theory of Hamiltonian differential equations studied from the perspective of differential dynamical systems. The N-body problem is used as the primary example of a Hamiltonian system, a touchstone for the theory as the authors develop it. This book is intended to support a first course at the graduate level for mathematics and engineering students. ... It is a well-organized and accessible introduction to the subject ... . This is an attractive book ... ." (William J. Satzer, The Mathematical Association of America, March, 2009) “The second edition of this text infuses new mathematical substance and relevance into an already modern classic ... and is sure to excite future generations of readers. ... This outstanding book can be used not only as an introductory course at the graduate level in mathematics, but also as course material for engineering graduate students. ... it is an elegant and invaluable reference for mathematicians and scientists with an interest in classical and celestial mechanics, astrodynamics, physics, biology, and related fields.” (Marian Gidea, Mathematical Reviews, Issue 2010 d)

Hamiltonian Mechanical Systems and Geometric Quantization

Download Hamiltonian Mechanical Systems and Geometric Quantization PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 9401119929
Total Pages : 289 pages
Book Rating : 4.4/5 (11 download)

DOWNLOAD NOW!


Book Synopsis Hamiltonian Mechanical Systems and Geometric Quantization by : Mircea Puta

Download or read book Hamiltonian Mechanical Systems and Geometric Quantization written by Mircea Puta and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 289 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume presents various aspects of the geometry of symplectic and Poisson manifolds, and applications in Hamiltonian mechanics and geometric quantization are indicated. Chapter 1 presents some general facts about symplectic vector space, symplectic manifolds and symplectic reduction. Chapter 2 deals with the study of Hamiltonian mechanics. Chapter 3 considers some standard facts concerning Lie groups and algebras which lead to the theory of momentum mappings and the Marsden--Weinstein reduction. Chapters 4 and 5 consider the theory and the stability of equilibrium solutions of Hamilton--Poisson mechanical systems. Chapters 6 and 7 are devoted to the theory of geometric quantization. This leads, in Chapter 8, to topics such as foliated cohomology, the theory of the Dolbeault--Kostant complex, and their applications. A discussion of the relation between geometric quantization and the Marsden--Weinstein reduction is presented in Chapter 9. The final chapter considers extending the theory of geometric quantization to Poisson manifolds, via the theory of symplectic groupoids. Each chapter concludes with problems and solutions, many of which present significant applications and, in some cases, major theorems. For graduate students and researchers whose interests and work involve symplectic geometry and Hamiltonian mechanics.

Notes on Hamiltonian Dynamical Systems Notes on Hamiltonian Dynamical Systems

Download Notes on Hamiltonian Dynamical Systems Notes on Hamiltonian Dynamical Systems PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 100917486X
Total Pages : 474 pages
Book Rating : 4.0/5 (91 download)

DOWNLOAD NOW!


Book Synopsis Notes on Hamiltonian Dynamical Systems Notes on Hamiltonian Dynamical Systems by : Antonio Giorgilli

Download or read book Notes on Hamiltonian Dynamical Systems Notes on Hamiltonian Dynamical Systems written by Antonio Giorgilli and published by Cambridge University Press. This book was released on 2022-05-05 with total page 474 pages. Available in PDF, EPUB and Kindle. Book excerpt: Starting with the basics of Hamiltonian dynamics and canonical transformations, this text follows the historical development of the theory culminating in recent results: the Kolmogorov–Arnold–Moser theorem, Nekhoroshev's theorem and superexponential stability. Its analytic approach allows students to learn about perturbation methods leading to advanced results. Key topics covered include Liouville's theorem, the proof of Poincaré's non-integrability theorem and the nonlinear dynamics in the neighbourhood of equilibria. The theorem of Kolmogorov on persistence of invariant tori and the theory of exponential stability of Nekhoroshev are proved via constructive algorithms based on the Lie series method. A final chapter is devoted to the discovery of chaos by Poincaré and its relations with integrability, also including recent results on superexponential stability. Written in an accessible, self-contained way with few prerequisites, this book can serve as an introductory text for senior undergraduate and graduate students.

Symplectic Invariants and Hamiltonian Dynamics

Download Symplectic Invariants and Hamiltonian Dynamics PDF Online Free

Author :
Publisher : Birkhäuser
ISBN 13 : 3034885407
Total Pages : 356 pages
Book Rating : 4.0/5 (348 download)

DOWNLOAD NOW!


Book Synopsis Symplectic Invariants and Hamiltonian Dynamics by : Helmut Hofer

Download or read book Symplectic Invariants and Hamiltonian Dynamics written by Helmut Hofer and published by Birkhäuser. This book was released on 2012-12-06 with total page 356 pages. Available in PDF, EPUB and Kindle. Book excerpt: Analysis of an old variational principal in classical mechanics has established global periodic phenomena in Hamiltonian systems. One of the links is a class of sympletic invariants, called sympletic capacities, and these invariants are the main theme of this book. Topics covered include basic sympletic geometry, sympletic capacities and rigidity, sympletic fixed point theory, and a survey on Floer homology and sympletic homology.

Geometry and Topology in Hamiltonian Dynamics and Statistical Mechanics

Download Geometry and Topology in Hamiltonian Dynamics and Statistical Mechanics PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 0387499571
Total Pages : 460 pages
Book Rating : 4.3/5 (874 download)

DOWNLOAD NOW!


Book Synopsis Geometry and Topology in Hamiltonian Dynamics and Statistical Mechanics by : Marco Pettini

Download or read book Geometry and Topology in Hamiltonian Dynamics and Statistical Mechanics written by Marco Pettini and published by Springer Science & Business Media. This book was released on 2007-06-14 with total page 460 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book covers a new explanation of the origin of Hamiltonian chaos and its quantitative characterization. The author focuses on two main areas: Riemannian formulation of Hamiltonian dynamics, providing an original viewpoint about the relationship between geodesic instability and curvature properties of the mechanical manifolds; and a topological theory of thermodynamic phase transitions, relating topology changes of microscopic configuration space with the generation of singularities of thermodynamic observables. The book contains numerous illustrations throughout and it will interest both mathematicians and physicists.

Morse Theory for Hamiltonian Systems

Download Morse Theory for Hamiltonian Systems PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1482285746
Total Pages : 202 pages
Book Rating : 4.4/5 (822 download)

DOWNLOAD NOW!


Book Synopsis Morse Theory for Hamiltonian Systems by : Alberto Abbondandolo

Download or read book Morse Theory for Hamiltonian Systems written by Alberto Abbondandolo and published by CRC Press. This book was released on 2001-03-15 with total page 202 pages. Available in PDF, EPUB and Kindle. Book excerpt: This Research Note explores existence and multiplicity questions for periodic solutions of first order, non-convex Hamiltonian systems. It introduces a new Morse (index) theory that is easier to use, less technical, and more flexible than existing theories and features techniques and results that, until now, have appeared only in scattered journals

Lectures on Symplectic Geometry

Download Lectures on Symplectic Geometry PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 354045330X
Total Pages : 240 pages
Book Rating : 4.5/5 (44 download)

DOWNLOAD NOW!


Book Synopsis Lectures on Symplectic Geometry by : Ana Cannas da Silva

Download or read book Lectures on Symplectic Geometry written by Ana Cannas da Silva and published by Springer. This book was released on 2004-10-27 with total page 240 pages. Available in PDF, EPUB and Kindle. Book excerpt: The goal of these notes is to provide a fast introduction to symplectic geometry for graduate students with some knowledge of differential geometry, de Rham theory and classical Lie groups. This text addresses symplectomorphisms, local forms, contact manifolds, compatible almost complex structures, Kaehler manifolds, hamiltonian mechanics, moment maps, symplectic reduction and symplectic toric manifolds. It contains guided problems, called homework, designed to complement the exposition or extend the reader's understanding. There are by now excellent references on symplectic geometry, a subset of which is in the bibliography of this book. However, the most efficient introduction to a subject is often a short elementary treatment, and these notes attempt to serve that purpose. This text provides a taste of areas of current research and will prepare the reader to explore recent papers and extensive books on symplectic geometry where the pace is much faster. For this reprint numerous corrections and clarifications have been made, and the layout has been improved.

Hamiltonian Dynamics

Download Hamiltonian Dynamics PDF Online Free

Author :
Publisher : World Scientific
ISBN 13 : 9814496731
Total Pages : 457 pages
Book Rating : 4.8/5 (144 download)

DOWNLOAD NOW!


Book Synopsis Hamiltonian Dynamics by : Gaetano Vilasi

Download or read book Hamiltonian Dynamics written by Gaetano Vilasi and published by World Scientific. This book was released on 2001-03-09 with total page 457 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is both a textbook and a monograph. It is partially based on a two-semester course, held by the author for third-year students in physics and mathematics at the University of Salerno, on analytical mechanics, differential geometry, symplectic manifolds and integrable systems.As a textbook, it provides a systematic and self-consistent formulation of Hamiltonian dynamics both in a rigorous coordinate language and in the modern language of differential geometry. It also presents powerful mathematical methods of theoretical physics, especially in gauge theories and general relativity.As a monograph, the book deals with the advanced research topic of completely integrable dynamics, with both finitely and infinitely many degrees of freedom, including geometrical structures of solitonic wave equations.

An Introduction to Symplectic Geometry

Download An Introduction to Symplectic Geometry PDF Online Free

Author :
Publisher : American Mathematical Soc.
ISBN 13 : 9780821820568
Total Pages : 226 pages
Book Rating : 4.8/5 (25 download)

DOWNLOAD NOW!


Book Synopsis An Introduction to Symplectic Geometry by : Rolf Berndt

Download or read book An Introduction to Symplectic Geometry written by Rolf Berndt and published by American Mathematical Soc.. This book was released on 2001 with total page 226 pages. Available in PDF, EPUB and Kindle. Book excerpt: Symplectic geometry is a central topic of current research in mathematics. Indeed, symplectic methods are key ingredients in the study of dynamical systems, differential equations, algebraic geometry, topology, mathematical physics and representations of Lie groups. This book is a true introduction to symplectic geometry, assuming only a general background in analysis and familiarity with linear algebra. It starts with the basics of the geometry of symplectic vector spaces. Then, symplectic manifolds are defined and explored. In addition to the essential classic results, such as Darboux's theorem, more recent results and ideas are also included here, such as symplectic capacity and pseudoholomorphic curves. These ideas have revolutionized the subject. The main examples of symplectic manifolds are given, including the cotangent bundle, Kähler manifolds, and coadjoint orbits. Further principal ideas are carefully examined, such as Hamiltonian vector fields, the Poisson bracket, and connections with contact manifolds. Berndt describes some of the close connections between symplectic geometry and mathematical physics in the last two chapters of the book. In particular, the moment map is defined and explored, both mathematically and in its relation to physics. He also introduces symplectic reduction, which is an important tool for reducing the number of variables in a physical system and for constructing new symplectic manifolds from old. The final chapter is on quantization, which uses symplectic methods to take classical mechanics to quantum mechanics. This section includes a discussion of the Heisenberg group and the Weil (or metaplectic) representation of the symplectic group. Several appendices provide background material on vector bundles, on cohomology, and on Lie groups and Lie algebras and their representations. Berndt's presentation of symplectic geometry is a clear and concise introduction to the major methods and applications of the subject, and requires only a minimum of prerequisites. This book would be an excellent text for a graduate course or as a source for anyone who wishes to learn about symplectic geometry.

Introduction to the Perturbation Theory of Hamiltonian Systems

Download Introduction to the Perturbation Theory of Hamiltonian Systems PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 3642030289
Total Pages : 221 pages
Book Rating : 4.6/5 (42 download)

DOWNLOAD NOW!


Book Synopsis Introduction to the Perturbation Theory of Hamiltonian Systems by : Dmitry Treschev

Download or read book Introduction to the Perturbation Theory of Hamiltonian Systems written by Dmitry Treschev and published by Springer Science & Business Media. This book was released on 2009-10-08 with total page 221 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is an extended version of lectures given by the ?rst author in 1995–1996 at the Department of Mechanics and Mathematics of Moscow State University. We believe that a major part of the book can be regarded as an additional material to the standard course of Hamiltonian mechanics. In comparison with the original Russian 1 version we have included new material, simpli?ed some proofs and corrected m- prints. Hamiltonian equations ?rst appeared in connection with problems of geometric optics and celestial mechanics. Later it became clear that these equations describe a large classof systemsin classical mechanics,physics,chemistry,and otherdomains. Hamiltonian systems and their discrete analogs play a basic role in such problems as rigid body dynamics, geodesics on Riemann surfaces, quasi-classic approximation in quantum mechanics, cosmological models, dynamics of particles in an accel- ator, billiards and other systems with elastic re?ections, many in?nite-dimensional models in mathematical physics, etc. In this book we study Hamiltonian systems assuming that they depend on some parameter (usually?), where for?= 0 the dynamics is in a sense simple (as a rule, integrable). Frequently such a parameter appears naturally. For example, in celestial mechanics it is accepted to take? equal to the ratio: the mass of Jupiter over the mass of the Sun. In other cases it is possible to introduce the small parameter ar- ?cially.

Introduction to Symplectic and Hamiltonian Geometry

Download Introduction to Symplectic and Hamiltonian Geometry PDF Online Free

Author :
Publisher :
ISBN 13 : 9788524401954
Total Pages : 130 pages
Book Rating : 4.4/5 (19 download)

DOWNLOAD NOW!


Book Synopsis Introduction to Symplectic and Hamiltonian Geometry by : Ana Cannas da Silva

Download or read book Introduction to Symplectic and Hamiltonian Geometry written by Ana Cannas da Silva and published by . This book was released on 2003 with total page 130 pages. Available in PDF, EPUB and Kindle. Book excerpt: