Geometry of CR-Submanifolds

Download Geometry of CR-Submanifolds PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 9789027721945
Total Pages : 202 pages
Book Rating : 4.7/5 (219 download)

DOWNLOAD NOW!


Book Synopsis Geometry of CR-Submanifolds by : Aurel Bejancu

Download or read book Geometry of CR-Submanifolds written by Aurel Bejancu and published by Springer Science & Business Media. This book was released on 1986-07-31 with total page 202 pages. Available in PDF, EPUB and Kindle. Book excerpt: Approach your problems from the right end It isn't that they can't see the solution. It is and begin with the answers. Then one day, that they can't see the problem. perhaps you will find the final question. G. K. Chesterton. The Scandal of Father 'The Hermit Clad in Crane Feathers' in R. Brown 'The point of a Pin'. van Gulik's The Chinese Maze Murders. Growing specialization and diversification have brought a host of monographs and textbooks on increasingly specialized topics. However, the "tree" of knowledge of mathematics and related fields does not grow only by putting forth new branches. It also happens, quite often in fact, that branches which were thought to be completely disparate are suddenly seen to be related. Further, the kind and level of sophistication of mathematics applied in various sciences has changed drastically in recent years: measure theory is used (non trivially) in regional and theoretical economics; algebraic geometry interacts with physics; the Minkowsky lemma, coding theory and the structure of water meet one another in packing and covering theory; quantum fields, crystal defects and mathematical programming profit from homotopy theory; Lie algebras are relevant to filtering; and prediction and electrical engineering can us;; Stein spaces. And in addition to this there are such new emerging subdisciplines as "experimental mathematics", "CFD", "completely integrable systems", "chaos, synergetics and large-scale order", which are almost impossible to fit into the existing classification schemes. They draw upon widely different sections of mathematics.

Geometry of CR-Submanifolds

Download Geometry of CR-Submanifolds PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 940094604X
Total Pages : 184 pages
Book Rating : 4.4/5 (9 download)

DOWNLOAD NOW!


Book Synopsis Geometry of CR-Submanifolds by : Aurel Bejancu

Download or read book Geometry of CR-Submanifolds written by Aurel Bejancu and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 184 pages. Available in PDF, EPUB and Kindle. Book excerpt: Approach your problems from the right end It isn't that they can't see the solution. It is and begin with the answers. Then one day, that they can't see the problem. perhaps you will find the final question. G. K. Chesterton. The Scandal of Father 'The Hermit Clad in Crane Feathers' in R. Brown 'The point of a Pin'. van Gulik's The Chinese Maze Murders. Growing specialization and diversification have brought a host of monographs and textbooks on increasingly specialized topics. However, the "tree" of knowledge of mathematics and related fields does not grow only by putting forth new branches. It also happens, quite often in fact, that branches which were thought to be completely disparate are suddenly seen to be related. Further, the kind and level of sophistication of mathematics applied in various sciences has changed drastically in recent years: measure theory is used (non trivially) in regional and theoretical economics; algebraic geometry interacts with physics; the Minkowsky lemma, coding theory and the structure of water meet one another in packing and covering theory; quantum fields, crystal defects and mathematical programming profit from homotopy theory; Lie algebras are relevant to filtering; and prediction and electrical engineering can us;; Stein spaces. And in addition to this there are such new emerging subdisciplines as "experimental mathematics", "CFD", "completely integrable systems", "chaos, synergetics and large-scale order", which are almost impossible to fit into the existing classification schemes. They draw upon widely different sections of mathematics.

Geometry of Submanifolds

Download Geometry of Submanifolds PDF Online Free

Author :
Publisher : Courier Dover Publications
ISBN 13 : 0486832783
Total Pages : 193 pages
Book Rating : 4.4/5 (868 download)

DOWNLOAD NOW!


Book Synopsis Geometry of Submanifolds by : Bang-Yen Chen

Download or read book Geometry of Submanifolds written by Bang-Yen Chen and published by Courier Dover Publications. This book was released on 2019-06-12 with total page 193 pages. Available in PDF, EPUB and Kindle. Book excerpt: The first two chapters of this frequently cited reference provide background material in Riemannian geometry and the theory of submanifolds. Subsequent chapters explore minimal submanifolds, submanifolds with parallel mean curvature vector, conformally flat manifolds, and umbilical manifolds. The final chapter discusses geometric inequalities of submanifolds, results in Morse theory and their applications, and total mean curvature of a submanifold. Suitable for graduate students and mathematicians in the area of classical and modern differential geometries, the treatment is largely self-contained. Problems sets conclude each chapter, and an extensive bibliography provides background for students wishing to conduct further research in this area. This new edition includes the author's corrections.

Geometry of Cauchy-Riemann Submanifolds

Download Geometry of Cauchy-Riemann Submanifolds PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 9811009163
Total Pages : 402 pages
Book Rating : 4.8/5 (11 download)

DOWNLOAD NOW!


Book Synopsis Geometry of Cauchy-Riemann Submanifolds by : Sorin Dragomir

Download or read book Geometry of Cauchy-Riemann Submanifolds written by Sorin Dragomir and published by Springer. This book was released on 2016-05-31 with total page 402 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book gathers contributions by respected experts on the theory of isometric immersions between Riemannian manifolds, and focuses on the geometry of CR structures on submanifolds in Hermitian manifolds. CR structures are a bundle theoretic recast of the tangential Cauchy–Riemann equations in complex analysis involving several complex variables. The book covers a wide range of topics such as Sasakian geometry, Kaehler and locally conformal Kaehler geometry, the tangential CR equations, Lorentzian geometry, holomorphic statistical manifolds, and paraquaternionic CR submanifolds. Intended as a tribute to Professor Aurel Bejancu, who discovered the notion of a CR submanifold of a Hermitian manifold in 1978, the book provides an up-to-date overview of several topics in the geometry of CR submanifolds. Presenting detailed information on the most recent advances in the area, it represents a useful resource for mathematicians and physicists alike.

Real Submanifolds in Complex Space and Their Mappings (PMS-47)

Download Real Submanifolds in Complex Space and Their Mappings (PMS-47) PDF Online Free

Author :
Publisher : Princeton University Press
ISBN 13 : 1400883962
Total Pages : 418 pages
Book Rating : 4.4/5 (8 download)

DOWNLOAD NOW!


Book Synopsis Real Submanifolds in Complex Space and Their Mappings (PMS-47) by : M. Salah Baouendi

Download or read book Real Submanifolds in Complex Space and Their Mappings (PMS-47) written by M. Salah Baouendi and published by Princeton University Press. This book was released on 2016-06-02 with total page 418 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents many of the main developments of the past two decades in the study of real submanifolds in complex space, providing crucial background material for researchers and advanced graduate students. The techniques in this area borrow from real and complex analysis and partial differential equations, as well as from differential, algebraic, and analytical geometry. In turn, these latter areas have been enriched over the years by the study of problems in several complex variables addressed here. The authors, M. Salah Baouendi, Peter Ebenfelt, and Linda Preiss Rothschild, include extensive preliminary material to make the book accessible to nonspecialists. One of the most important topics that the authors address here is the holomorphic extension of functions and mappings that satisfy the tangential Cauchy-Riemann equations on real submanifolds. They present the main results in this area with a novel and self-contained approach. The book also devotes considerable attention to the study of holomorphic mappings between real submanifolds, and proves finite determination of such mappings by their jets under some optimal assumptions. The authors also give a thorough comparison of the various nondegeneracy conditions for manifolds and mappings and present new geometric interpretations of these conditions. Throughout the book, Cauchy-Riemann vector fields and their orbits play a central role and are presented in a setting that is both general and elementary.

Differential Geometry Of Warped Product Manifolds And Submanifolds

Download Differential Geometry Of Warped Product Manifolds And Submanifolds PDF Online Free

Author :
Publisher : World Scientific
ISBN 13 : 9813208945
Total Pages : 517 pages
Book Rating : 4.8/5 (132 download)

DOWNLOAD NOW!


Book Synopsis Differential Geometry Of Warped Product Manifolds And Submanifolds by : Bang-yen Chen

Download or read book Differential Geometry Of Warped Product Manifolds And Submanifolds written by Bang-yen Chen and published by World Scientific. This book was released on 2017-05-29 with total page 517 pages. Available in PDF, EPUB and Kindle. Book excerpt: A warped product manifold is a Riemannian or pseudo-Riemannian manifold whose metric tensor can be decomposed into a Cartesian product of the y geometry and the x geometry — except that the x-part is warped, that is, it is rescaled by a scalar function of the other coordinates y. The notion of warped product manifolds plays very important roles not only in geometry but also in mathematical physics, especially in general relativity. In fact, many basic solutions of the Einstein field equations, including the Schwarzschild solution and the Robertson-Walker models, are warped product manifolds.The first part of this volume provides a self-contained and accessible introduction to the important subject of pseudo-Riemannian manifolds and submanifolds. The second part presents a detailed and up-to-date account on important results of warped product manifolds, including several important spacetimes such as Robertson-Walker's and Schwarzschild's.The famous John Nash's embedding theorem published in 1956 implies that every warped product manifold can be realized as a warped product submanifold in a suitable Euclidean space. The study of warped product submanifolds in various important ambient spaces from an extrinsic point of view was initiated by the author around the beginning of this century.The last part of this volume contains an extensive and comprehensive survey of numerous important results on the geometry of warped product submanifolds done during this century by many geometers.

Differential Geometry of Lightlike Submanifolds

Download Differential Geometry of Lightlike Submanifolds PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 3034602510
Total Pages : 484 pages
Book Rating : 4.0/5 (346 download)

DOWNLOAD NOW!


Book Synopsis Differential Geometry of Lightlike Submanifolds by : Krishan L. Duggal

Download or read book Differential Geometry of Lightlike Submanifolds written by Krishan L. Duggal and published by Springer Science & Business Media. This book was released on 2011-02-02 with total page 484 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents research on the latest developments in differential geometry of lightlike (degenerate) subspaces. The main focus is on hypersurfaces and a variety of submanifolds of indefinite Kählerian, Sasakian and quaternion Kähler manifolds.

CR Embedded Submanifolds of CR Manifolds

Download CR Embedded Submanifolds of CR Manifolds PDF Online Free

Author :
Publisher : American Mathematical Soc.
ISBN 13 : 1470435446
Total Pages : 94 pages
Book Rating : 4.4/5 (74 download)

DOWNLOAD NOW!


Book Synopsis CR Embedded Submanifolds of CR Manifolds by : Sean N. Curry

Download or read book CR Embedded Submanifolds of CR Manifolds written by Sean N. Curry and published by American Mathematical Soc.. This book was released on 2019-04-10 with total page 94 pages. Available in PDF, EPUB and Kindle. Book excerpt: The authors develop a complete local theory for CR embedded submanifolds of CR manifolds in a way which parallels the Ricci calculus for Riemannian submanifold theory. They define a normal tractor bundle in the ambient standard tractor bundle along the submanifold and show that the orthogonal complement of this bundle is not canonically isomorphic to the standard tractor bundle of the submanifold. By determining the subtle relationship between submanifold and ambient CR density bundles the authors are able to invariantly relate these two tractor bundles, and hence to invariantly relate the normal Cartan connections of the submanifold and ambient manifold by a tractor analogue of the Gauss formula. This also leads to CR analogues of the Gauss, Codazzi, and Ricci equations. The tractor Gauss formula includes two basic invariants of a CR embedding which, along with the submanifold and ambient curvatures, capture the jet data of the structure of a CR embedding. These objects therefore form the basic building blocks for the construction of local invariants of the embedding. From this basis the authors develop a broad calculus for the construction of the invariants and invariant differential operators of CR embedded submanifolds. The CR invariant tractor calculus of CR embeddings is developed concretely in terms of the Tanaka-Webster calculus of an arbitrary (suitably adapted) ambient contact form. This enables straightforward and explicit calculation of the pseudohermitian invariants of the embedding which are also CR invariant. These are extremely difficult to find and compute by more naïve methods. The authors conclude by establishing a CR analogue of the classical Bonnet theorem in Riemannian submanifold theory.

An Introduction to the Heisenberg Group and the Sub-Riemannian Isoperimetric Problem

Download An Introduction to the Heisenberg Group and the Sub-Riemannian Isoperimetric Problem PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 3764381337
Total Pages : 235 pages
Book Rating : 4.7/5 (643 download)

DOWNLOAD NOW!


Book Synopsis An Introduction to the Heisenberg Group and the Sub-Riemannian Isoperimetric Problem by : Luca Capogna

Download or read book An Introduction to the Heisenberg Group and the Sub-Riemannian Isoperimetric Problem written by Luca Capogna and published by Springer Science & Business Media. This book was released on 2007-08-08 with total page 235 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book gives an up-to-date account of progress on Pansu's celebrated problem on the sub-Riemannian isoperimetric profile of the Heisenberg group. It also serves as an introduction to the general field of sub-Riemannian geometric analysis. It develops the methods and tools of sub-Riemannian differential geometry, nonsmooth analysis, and geometric measure theory suitable for attacks on Pansu's problem.

From Stein to Weinstein and Back

Download From Stein to Weinstein and Back PDF Online Free

Author :
Publisher : American Mathematical Soc.
ISBN 13 : 0821885332
Total Pages : 379 pages
Book Rating : 4.8/5 (218 download)

DOWNLOAD NOW!


Book Synopsis From Stein to Weinstein and Back by : Kai Cieliebak

Download or read book From Stein to Weinstein and Back written by Kai Cieliebak and published by American Mathematical Soc.. This book was released on 2012 with total page 379 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is devoted to the interplay between complex and symplectic geometry in affine complex manifolds. Affine complex (a.k.a. Stein) manifolds have canonically built into them symplectic geometry which is responsible for many phenomena in complex geometry and analysis. The goal of the book is the exploration of this symplectic geometry (the road from 'Stein to Weinstein') and its applications in the complex geometric world of Stein manifolds (the road 'back').

Lectures on Symplectic Geometry

Download Lectures on Symplectic Geometry PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 354045330X
Total Pages : 240 pages
Book Rating : 4.5/5 (44 download)

DOWNLOAD NOW!


Book Synopsis Lectures on Symplectic Geometry by : Ana Cannas da Silva

Download or read book Lectures on Symplectic Geometry written by Ana Cannas da Silva and published by Springer. This book was released on 2004-10-27 with total page 240 pages. Available in PDF, EPUB and Kindle. Book excerpt: The goal of these notes is to provide a fast introduction to symplectic geometry for graduate students with some knowledge of differential geometry, de Rham theory and classical Lie groups. This text addresses symplectomorphisms, local forms, contact manifolds, compatible almost complex structures, Kaehler manifolds, hamiltonian mechanics, moment maps, symplectic reduction and symplectic toric manifolds. It contains guided problems, called homework, designed to complement the exposition or extend the reader's understanding. There are by now excellent references on symplectic geometry, a subset of which is in the bibliography of this book. However, the most efficient introduction to a subject is often a short elementary treatment, and these notes attempt to serve that purpose. This text provides a taste of areas of current research and will prepare the reader to explore recent papers and extensive books on symplectic geometry where the pace is much faster. For this reprint numerous corrections and clarifications have been made, and the layout has been improved.

Locally Conformal Kähler Geometry

Download Locally Conformal Kähler Geometry PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1461220262
Total Pages : 332 pages
Book Rating : 4.4/5 (612 download)

DOWNLOAD NOW!


Book Synopsis Locally Conformal Kähler Geometry by : Sorin Dragomir

Download or read book Locally Conformal Kähler Geometry written by Sorin Dragomir and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 332 pages. Available in PDF, EPUB and Kindle. Book excerpt: . E C, 0 1'1 1, and n E Z, n ~ 2. Let~.. be the O-dimensional Lie n group generated by the transformation z ~ >.z, z E C - {a}. Then (cf.

Foliations and Geometric Structures

Download Foliations and Geometric Structures PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1402037201
Total Pages : 309 pages
Book Rating : 4.4/5 (2 download)

DOWNLOAD NOW!


Book Synopsis Foliations and Geometric Structures by : Aurel Bejancu

Download or read book Foliations and Geometric Structures written by Aurel Bejancu and published by Springer Science & Business Media. This book was released on 2006-01-17 with total page 309 pages. Available in PDF, EPUB and Kindle. Book excerpt: Offers basic material on distributions and foliations. This book introduces and builds the tools needed for studying the geometry of foliated manifolds. Its main theme is to investigate the interrelations between foliations of a manifold on the one hand, and the many geometric structures that the manifold may admit on the other hand.

Glasnik Matematicki

Download Glasnik Matematicki PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 228 pages
Book Rating : 4./5 ( download)

DOWNLOAD NOW!


Book Synopsis Glasnik Matematicki by :

Download or read book Glasnik Matematicki written by and published by . This book was released on 1982 with total page 228 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Foliations in Cauchy-Riemann Geometry

Download Foliations in Cauchy-Riemann Geometry PDF Online Free

Author :
Publisher : American Mathematical Soc.
ISBN 13 : 0821843044
Total Pages : 270 pages
Book Rating : 4.8/5 (218 download)

DOWNLOAD NOW!


Book Synopsis Foliations in Cauchy-Riemann Geometry by : Elisabetta Barletta

Download or read book Foliations in Cauchy-Riemann Geometry written by Elisabetta Barletta and published by American Mathematical Soc.. This book was released on 2007 with total page 270 pages. Available in PDF, EPUB and Kindle. Book excerpt: The authors study the relationship between foliation theory and differential geometry and analysis on Cauchy-Riemann (CR) manifolds. The main objects of study are transversally and tangentially CR foliations, Levi foliations of CR manifolds, solutions of the Yang-Mills equations, tangentially Monge-Ampere foliations, the transverse Beltrami equations, and CR orbifolds. The novelty of the authors' approach consists in the overall use of the methods of foliation theory and choice of specific applications. Examples of such applications are Rea's holomorphic extension of Levi foliations, Stanton's holomorphic degeneracy, Boas and Straube's approximately commuting vector fields method for the study of global regularity of Neumann operators and Bergman projections in multi-dimensional complex analysis in several complex variables, as well as various applications to differential geometry. Many open problems proposed in the monograph may attract the mathematical community and lead to further applications of

CR Submanifolds of Complex Projective Space

Download CR Submanifolds of Complex Projective Space PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1441904344
Total Pages : 171 pages
Book Rating : 4.4/5 (419 download)

DOWNLOAD NOW!


Book Synopsis CR Submanifolds of Complex Projective Space by : Mirjana Djoric

Download or read book CR Submanifolds of Complex Projective Space written by Mirjana Djoric and published by Springer Science & Business Media. This book was released on 2009-10-09 with total page 171 pages. Available in PDF, EPUB and Kindle. Book excerpt: Althoughsubmanifoldscomplexmanifoldshasbeenanactive?eldofstudyfor many years, in some sense this area is not su?ciently covered in the current literature. This text deals with the CR submanifolds of complex manifolds, with particular emphasis on CR submanifolds of complex projective space, and it covers the topics which are necessary for learning the basic properties of these manifolds. We are aware that it is impossible to give a complete overview of these submanifolds, but we hope that these notes can serve as an introduction to their study. We present the fundamental de?nitions and results necessary for reaching the frontiers of research in this ?eld. There are many monographs dealing with some current interesting topics in di?erential geometry, but most of these are written as encyclopedias, or research monographs, gathering recent results and giving the readers ample usefulinformationaboutthetopics. Therefore, thesekindsofmonographsare attractive to specialists in di?erential geometry and related ?elds and acce- able to professional di?erential geometers. However, for graduate students who are less advanced in di?erential geometry, these texts might be hard to read without assistance from their instructors. By contrast, the general philosophy of this book is to begin with the elementary facts about complex manifolds and their submanifolds, give some details and proofs, and introduce the reader to the study of CR submanifolds of complex manifolds; especially complex projective space. It includes only a few original results with precise proofs, while the others are cited in the reference list.

CR Submanifolds of Kaehlerian and Sasakian Manifolds

Download CR Submanifolds of Kaehlerian and Sasakian Manifolds PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1468494244
Total Pages : 224 pages
Book Rating : 4.4/5 (684 download)

DOWNLOAD NOW!


Book Synopsis CR Submanifolds of Kaehlerian and Sasakian Manifolds by : Kentaro Yano

Download or read book CR Submanifolds of Kaehlerian and Sasakian Manifolds written by Kentaro Yano and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 224 pages. Available in PDF, EPUB and Kindle. Book excerpt: