The Foundations of Artificial Intelligence

Download The Foundations of Artificial Intelligence PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 9780521359443
Total Pages : 516 pages
Book Rating : 4.3/5 (594 download)

DOWNLOAD NOW!


Book Synopsis The Foundations of Artificial Intelligence by : Derek Partridge

Download or read book The Foundations of Artificial Intelligence written by Derek Partridge and published by Cambridge University Press. This book was released on 1990-04-26 with total page 516 pages. Available in PDF, EPUB and Kindle. Book excerpt: This outstanding collection is designed to address the fundamental issues and principles underlying the task of Artificial Intelligence.

Foundations of Machine Learning, second edition

Download Foundations of Machine Learning, second edition PDF Online Free

Author :
Publisher : MIT Press
ISBN 13 : 0262351366
Total Pages : 505 pages
Book Rating : 4.2/5 (623 download)

DOWNLOAD NOW!


Book Synopsis Foundations of Machine Learning, second edition by : Mehryar Mohri

Download or read book Foundations of Machine Learning, second edition written by Mehryar Mohri and published by MIT Press. This book was released on 2018-12-25 with total page 505 pages. Available in PDF, EPUB and Kindle. Book excerpt: A new edition of a graduate-level machine learning textbook that focuses on the analysis and theory of algorithms. This book is a general introduction to machine learning that can serve as a textbook for graduate students and a reference for researchers. It covers fundamental modern topics in machine learning while providing the theoretical basis and conceptual tools needed for the discussion and justification of algorithms. It also describes several key aspects of the application of these algorithms. The authors aim to present novel theoretical tools and concepts while giving concise proofs even for relatively advanced topics. Foundations of Machine Learning is unique in its focus on the analysis and theory of algorithms. The first four chapters lay the theoretical foundation for what follows; subsequent chapters are mostly self-contained. Topics covered include the Probably Approximately Correct (PAC) learning framework; generalization bounds based on Rademacher complexity and VC-dimension; Support Vector Machines (SVMs); kernel methods; boosting; on-line learning; multi-class classification; ranking; regression; algorithmic stability; dimensionality reduction; learning automata and languages; and reinforcement learning. Each chapter ends with a set of exercises. Appendixes provide additional material including concise probability review. This second edition offers three new chapters, on model selection, maximum entropy models, and conditional entropy models. New material in the appendixes includes a major section on Fenchel duality, expanded coverage of concentration inequalities, and an entirely new entry on information theory. More than half of the exercises are new to this edition.

Logical Foundations of Artificial Intelligence

Download Logical Foundations of Artificial Intelligence PDF Online Free

Author :
Publisher : Morgan Kaufmann
ISBN 13 : 0128015543
Total Pages : 427 pages
Book Rating : 4.1/5 (28 download)

DOWNLOAD NOW!


Book Synopsis Logical Foundations of Artificial Intelligence by : Michael R. Genesereth

Download or read book Logical Foundations of Artificial Intelligence written by Michael R. Genesereth and published by Morgan Kaufmann. This book was released on 2012-07-05 with total page 427 pages. Available in PDF, EPUB and Kindle. Book excerpt: Intended both as a text for advanced undergraduates and graduate students, and as a key reference work for AI researchers and developers, Logical Foundations of Artificial Intelligence is a lucid, rigorous, and comprehensive account of the fundamentals of artificial intelligence from the standpoint of logic. The first section of the book introduces the logicist approach to AI--discussing the representation of declarative knowledge and featuring an introduction to the process of conceptualization, the syntax and semantics of predicate calculus, and the basics of other declarative representations such as frames and semantic nets. This section also provides a simple but powerful inference procedure, resolution, and shows how it can be used in a reasoning system. The next several chapters discuss nonmonotonic reasoning, induction, and reasoning under uncertainty, broadening the logical approach to deal with the inadequacies of strict logical deduction. The third section introduces modal operators that facilitate representing and reasoning about knowledge. This section also develops the process of writing predicate calculus sentences to the metalevel--to permit sentences about sentences and about reasoning processes. The final three chapters discuss the representation of knowledge about states and actions, planning, and intelligent system architecture. End-of-chapter bibliographic and historical comments provide background and point to other works of interest and research. Each chapter also contains numerous student exercises (with solutions provided in an appendix) to reinforce concepts and challenge the learner. A bibliography and index complete this comprehensive work.

Handbook of Knowledge Representation

Download Handbook of Knowledge Representation PDF Online Free

Author :
Publisher : Elsevier
ISBN 13 : 0080557023
Total Pages : 1035 pages
Book Rating : 4.0/5 (85 download)

DOWNLOAD NOW!


Book Synopsis Handbook of Knowledge Representation by : Frank van Harmelen

Download or read book Handbook of Knowledge Representation written by Frank van Harmelen and published by Elsevier. This book was released on 2008-01-08 with total page 1035 pages. Available in PDF, EPUB and Kindle. Book excerpt: Handbook of Knowledge Representation describes the essential foundations of Knowledge Representation, which lies at the core of Artificial Intelligence (AI). The book provides an up-to-date review of twenty-five key topics in knowledge representation, written by the leaders of each field. It includes a tutorial background and cutting-edge developments, as well as applications of Knowledge Representation in a variety of AI systems. This handbook is organized into three parts. Part I deals with general methods in Knowledge Representation and reasoning and covers such topics as classical logic in Knowledge Representation; satisfiability solvers; description logics; constraint programming; conceptual graphs; nonmonotonic reasoning; model-based problem solving; and Bayesian networks. Part II focuses on classes of knowledge and specialized representations, with chapters on temporal representation and reasoning; spatial and physical reasoning; reasoning about knowledge and belief; temporal action logics; and nonmonotonic causal logic. Part III discusses Knowledge Representation in applications such as question answering; the semantic web; automated planning; cognitive robotics; multi-agent systems; and knowledge engineering. This book is an essential resource for graduate students, researchers, and practitioners in knowledge representation and AI. * Make your computer smarter* Handle qualitative and uncertain information* Improve computational tractability to solve your problems easily

Artificial Intelligence

Download Artificial Intelligence PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 110719539X
Total Pages : 821 pages
Book Rating : 4.1/5 (71 download)

DOWNLOAD NOW!


Book Synopsis Artificial Intelligence by : David L. Poole

Download or read book Artificial Intelligence written by David L. Poole and published by Cambridge University Press. This book was released on 2017-09-25 with total page 821 pages. Available in PDF, EPUB and Kindle. Book excerpt: Artificial Intelligence presents a practical guide to AI, including agents, machine learning and problem-solving simple and complex domains.

Artificial Intelligence Foundations

Download Artificial Intelligence Foundations PDF Online Free

Author :
Publisher : BCS, The Chartered Institute for IT
ISBN 13 : 9781780175287
Total Pages : 160 pages
Book Rating : 4.1/5 (752 download)

DOWNLOAD NOW!


Book Synopsis Artificial Intelligence Foundations by : Andrew Lowe

Download or read book Artificial Intelligence Foundations written by Andrew Lowe and published by BCS, The Chartered Institute for IT. This book was released on 2020-08-24 with total page 160 pages. Available in PDF, EPUB and Kindle. Book excerpt: In line with the BCS AI Foundation and Essentials certificates, this book guides you through the world of AI. You will learn how AI is being utilised today, and how it is likely to be used in the future. You will explore robotics and machine learning within the context of AI, and discover how the challenges AI presents are being addressed.

Theoretical Foundations of Artificial General Intelligence

Download Theoretical Foundations of Artificial General Intelligence PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 9491216627
Total Pages : 332 pages
Book Rating : 4.4/5 (912 download)

DOWNLOAD NOW!


Book Synopsis Theoretical Foundations of Artificial General Intelligence by : Pei Wang

Download or read book Theoretical Foundations of Artificial General Intelligence written by Pei Wang and published by Springer Science & Business Media. This book was released on 2012-08-31 with total page 332 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is a collection of writings by active researchers in the field of Artificial General Intelligence, on topics of central importance in the field. Each chapter focuses on one theoretical problem, proposes a novel solution, and is written in sufficiently non-technical language to be understandable by advanced undergraduates or scientists in allied fields. This book is the very first collection in the field of Artificial General Intelligence (AGI) focusing on theoretical, conceptual, and philosophical issues in the creation of thinking machines. All the authors are researchers actively developing AGI projects, thus distinguishing the book from much of the theoretical cognitive science and AI literature, which is generally quite divorced from practical AGI system building issues. And the discussions are presented in a way that makes the problems and proposed solutions understandable to a wide readership of non-specialists, providing a distinction from the journal and conference-proceedings literature. The book will benefit AGI researchers and students by giving them a solid orientation in the conceptual foundations of the field (which is not currently available anywhere); and it would benefit researchers in allied fields by giving them a high-level view of the current state of thinking in the AGI field. Furthermore, by addressing key topics in the field in a coherent way, the collection as a whole may play an important role in guiding future research in both theoretical and practical AGI, and in linking AGI research with work in allied disciplines

Handbook of Constraint Programming

Download Handbook of Constraint Programming PDF Online Free

Author :
Publisher : Elsevier
ISBN 13 : 0080463800
Total Pages : 977 pages
Book Rating : 4.0/5 (84 download)

DOWNLOAD NOW!


Book Synopsis Handbook of Constraint Programming by : Francesca Rossi

Download or read book Handbook of Constraint Programming written by Francesca Rossi and published by Elsevier. This book was released on 2006-08-18 with total page 977 pages. Available in PDF, EPUB and Kindle. Book excerpt: Constraint programming is a powerful paradigm for solving combinatorial search problems that draws on a wide range of techniques from artificial intelligence, computer science, databases, programming languages, and operations research. Constraint programming is currently applied with success to many domains, such as scheduling, planning, vehicle routing, configuration, networks, and bioinformatics.The aim of this handbook is to capture the full breadth and depth of the constraint programming field and to be encyclopedic in its scope and coverage. While there are several excellent books on constraint programming, such books necessarily focus on the main notions and techniques and cannot cover also extensions, applications, and languages. The handbook gives a reasonably complete coverage of all these lines of work, based on constraint programming, so that a reader can have a rather precise idea of the whole field and its potential. Of course each line of work is dealt with in a survey-like style, where some details may be neglected in favor of coverage. However, the extensive bibliography of each chapter will help the interested readers to find suitable sources for the missing details. Each chapter of the handbook is intended to be a self-contained survey of a topic, and is written by one or more authors who are leading researchers in the area.The intended audience of the handbook is researchers, graduate students, higher-year undergraduates and practitioners who wish to learn about the state-of-the-art in constraint programming. No prior knowledge about the field is necessary to be able to read the chapters and gather useful knowledge. Researchers from other fields should find in this handbook an effective way to learn about constraint programming and to possibly use some of the constraint programming concepts and techniques in their work, thus providing a means for a fruitful cross-fertilization among different research areas.The handbook is organized in two parts. The first part covers the basic foundations of constraint programming, including the history, the notion of constraint propagation, basic search methods, global constraints, tractability and computational complexity, and important issues in modeling a problem as a constraint problem. The second part covers constraint languages and solver, several useful extensions to the basic framework (such as interval constraints, structured domains, and distributed CSPs), and successful application areas for constraint programming.- Covers the whole field of constraint programming- Survey-style chapters- Five chapters on applications

Machine Learning Foundations

Download Machine Learning Foundations PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3030659003
Total Pages : 391 pages
Book Rating : 4.0/5 (36 download)

DOWNLOAD NOW!


Book Synopsis Machine Learning Foundations by : Taeho Jo

Download or read book Machine Learning Foundations written by Taeho Jo and published by Springer Nature. This book was released on 2021-02-12 with total page 391 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides conceptual understanding of machine learning algorithms though supervised, unsupervised, and advanced learning techniques. The book consists of four parts: foundation, supervised learning, unsupervised learning, and advanced learning. The first part provides the fundamental materials, background, and simple machine learning algorithms, as the preparation for studying machine learning algorithms. The second and the third parts provide understanding of the supervised learning algorithms and the unsupervised learning algorithms as the core parts. The last part provides advanced machine learning algorithms: ensemble learning, semi-supervised learning, temporal learning, and reinforced learning. Provides comprehensive coverage of both learning algorithms: supervised and unsupervised learning; Outlines the computation paradigm for solving classification, regression, and clustering; Features essential techniques for building the a new generation of machine learning.

Foundations of Distributed Artificial Intelligence

Download Foundations of Distributed Artificial Intelligence PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 9780471006756
Total Pages : 598 pages
Book Rating : 4.0/5 (67 download)

DOWNLOAD NOW!


Book Synopsis Foundations of Distributed Artificial Intelligence by : G. M. P. O'Hare

Download or read book Foundations of Distributed Artificial Intelligence written by G. M. P. O'Hare and published by John Wiley & Sons. This book was released on 1996-04-05 with total page 598 pages. Available in PDF, EPUB and Kindle. Book excerpt: Distributed Artificial Intelligence (DAI) is a dynamic area of research and this book is the first comprehensive, truly integrated exposition of the discipline presenting influential contributions from leaders in the field. Commences with a solid introduction to the theoretical and practical issues of DAI, followed by a discussion of the core research topics--communication, coordination, planning--and how they are related to each other. The third section describes a number of DAI testbeds, illustrating particular strategies commissioned to provide software environments for building and experimenting with DAI systems. The final segment contains contributions which consider DAI from different perspectives.

Handbook of Temporal Reasoning in Artificial Intelligence

Download Handbook of Temporal Reasoning in Artificial Intelligence PDF Online Free

Author :
Publisher : Elsevier
ISBN 13 : 0080533361
Total Pages : 753 pages
Book Rating : 4.0/5 (85 download)

DOWNLOAD NOW!


Book Synopsis Handbook of Temporal Reasoning in Artificial Intelligence by : Michael David Fisher

Download or read book Handbook of Temporal Reasoning in Artificial Intelligence written by Michael David Fisher and published by Elsevier. This book was released on 2005-03-01 with total page 753 pages. Available in PDF, EPUB and Kindle. Book excerpt: This collection represents the primary reference work for researchers and students in the area of Temporal Reasoning in Artificial Intelligence. Temporal reasoning has a vital role to play in many areas, particularly Artificial Intelligence. Yet, until now, there has been no single volume collecting together the breadth of work in this area. This collection brings together the leading researchers in a range of relevant areas and provides an coherent description of the breadth of activity concerning temporal reasoning in the filed of Artificial Intelligence.Key Features:- Broad range: foundations; techniques and applications- Leading researchers around the world have written the chapters- Covers many vital applications- Source book for Artificial Intelligence, temporal reasoning- Approaches provide foundation for many future software systems· Broad range: foundations; techniques and applications· Leading researchers around the world have written the chapters· Covers many vital applications· Source book for Artificial Intelligence, temporal reasoning· Approaches provide foundation for many future software systems

Foundations of Artificial Intelligence in Healthcare and Bioscience

Download Foundations of Artificial Intelligence in Healthcare and Bioscience PDF Online Free

Author :
Publisher : Academic Press
ISBN 13 : 0323860052
Total Pages : 562 pages
Book Rating : 4.3/5 (238 download)

DOWNLOAD NOW!


Book Synopsis Foundations of Artificial Intelligence in Healthcare and Bioscience by : Louis J. Catania

Download or read book Foundations of Artificial Intelligence in Healthcare and Bioscience written by Louis J. Catania and published by Academic Press. This book was released on 2020-11-25 with total page 562 pages. Available in PDF, EPUB and Kindle. Book excerpt: Foundational Handbook of Artificial Intelligence in Healthcare and Bioscience: A User Friendly Guide for IT Professionals, Healthcare Providers, Researchers, and Clinicians uses color-coded illustrations to explain AI from its basics to modern technologies. Other sections cover extensive, current literature research and citations regarding AI's role in the business and clinical aspects of health care. The book provides readers with a unique opportunity to appreciate AI technology in practical terms, understand its applications, and realize its profound influence on the clinical and business aspects of health care. Artificial Intelligence is a disruptive technology that is having a profound and growing influence on the business of health care as well as medical diagnosis, treatment, research and clinical delivery. The AI relationships in health care are complex, but understandable, especially when discussed and developed from their foundational elements through to their practical applications in health care. - Provides an illustrated, foundational guide and comprehensive descriptions of what Artificial Intelligence is and how it functions - Integrates a comprehensive discussion of AI applications in the business of health care - Presents in-depth clinical and AI-related discussions on diagnostic medicine, therapeutic medicine, and prevalent disease categories with an emphasis on immunology and genetics, the two categories most influenced by AI - Includes comprehensive coverage of a variety of AI treatment applications, including medical/pharmaceutical care, nursing care, stem cell therapies, robotics, and 10 common disease categories with AI applications

On the path to AI

Download On the path to AI PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3030435822
Total Pages : 163 pages
Book Rating : 4.0/5 (34 download)

DOWNLOAD NOW!


Book Synopsis On the path to AI by : Thomas D. Grant

Download or read book On the path to AI written by Thomas D. Grant and published by Springer Nature. This book was released on 2020-06-02 with total page 163 pages. Available in PDF, EPUB and Kindle. Book excerpt: This open access book explores machine learning and its impact on how we make sense of the world. It does so by bringing together two ‘revolutions’ in a surprising analogy: the revolution of machine learning, which has placed computing on the path to artificial intelligence, and the revolution in thinking about the law that was spurred by Oliver Wendell Holmes Jr in the last two decades of the 19th century. Holmes reconceived law as prophecy based on experience, prefiguring the buzzwords of the machine learning age—prediction based on datasets. On the path to AI introduces readers to the key concepts of machine learning, discusses the potential applications and limitations of predictions generated by machines using data, and informs current debates amongst scholars, lawyers and policy makers on how it should be used and regulated wisely. Technologists will also find useful lessons learned from the last 120 years of legal grappling with accountability, explainability, and biased data.

Artificial Intelligence for Business

Download Artificial Intelligence for Business PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3030882411
Total Pages : 210 pages
Book Rating : 4.0/5 (38 download)

DOWNLOAD NOW!


Book Synopsis Artificial Intelligence for Business by : Ana Landeta Echeberria

Download or read book Artificial Intelligence for Business written by Ana Landeta Echeberria and published by Springer Nature. This book was released on 2022-01-22 with total page 210 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book seeks to build a shared understanding of Artificial Intelligence (AI) within the global business scenario today and in the near future. Drawing on academic theory and real-world case studies, it examines AI’s development and application across a number of business contexts. Taking current scholarship forward in its engagement with AI theory and practice for enterprises and applied research and innovation, it outlines international practices for the promotion of reliable AI systems, trends, research and development, fostering a digital ecosystem for AI and preparing companies for job transformation and building skills. This book will be of great interest to academics studying Digital Business, Digital Strategy, Innovation Management, and Information Technology.

Fundamentals of Artificial Intelligence

Download Fundamentals of Artificial Intelligence PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 8132239725
Total Pages : 730 pages
Book Rating : 4.1/5 (322 download)

DOWNLOAD NOW!


Book Synopsis Fundamentals of Artificial Intelligence by : K.R. Chowdhary

Download or read book Fundamentals of Artificial Intelligence written by K.R. Chowdhary and published by Springer Nature. This book was released on 2020-04-04 with total page 730 pages. Available in PDF, EPUB and Kindle. Book excerpt: Fundamentals of Artificial Intelligence introduces the foundations of present day AI and provides coverage to recent developments in AI such as Constraint Satisfaction Problems, Adversarial Search and Game Theory, Statistical Learning Theory, Automated Planning, Intelligent Agents, Information Retrieval, Natural Language & Speech Processing, and Machine Vision. The book features a wealth of examples and illustrations, and practical approaches along with the theoretical concepts. It covers all major areas of AI in the domain of recent developments. The book is intended primarily for students who major in computer science at undergraduate and graduate level but will also be of interest as a foundation to researchers in the area of AI.

Wittgenstein's Remarks on the Foundations of AI

Download Wittgenstein's Remarks on the Foundations of AI PDF Online Free

Author :
Publisher : Routledge
ISBN 13 : 1134859910
Total Pages : 535 pages
Book Rating : 4.1/5 (348 download)

DOWNLOAD NOW!


Book Synopsis Wittgenstein's Remarks on the Foundations of AI by : Stuart G. Shanker

Download or read book Wittgenstein's Remarks on the Foundations of AI written by Stuart G. Shanker and published by Routledge. This book was released on 2002-01-31 with total page 535 pages. Available in PDF, EPUB and Kindle. Book excerpt: Wittgenstein's Remarks on the Foundations of AI is a valuable contribution to the study of Wittgenstein's theories and his controversial attack on artifical intelligence, which successfully crosses a number of disciplines, including philosophy, psychology, logic, artificial intelligence and cognitive science, to provide a stimulating and searching analysis.

Learning Deep Architectures for AI

Download Learning Deep Architectures for AI PDF Online Free

Author :
Publisher : Now Publishers Inc
ISBN 13 : 1601982941
Total Pages : 145 pages
Book Rating : 4.6/5 (19 download)

DOWNLOAD NOW!


Book Synopsis Learning Deep Architectures for AI by : Yoshua Bengio

Download or read book Learning Deep Architectures for AI written by Yoshua Bengio and published by Now Publishers Inc. This book was released on 2009 with total page 145 pages. Available in PDF, EPUB and Kindle. Book excerpt: Theoretical results suggest that in order to learn the kind of complicated functions that can represent high-level abstractions (e.g. in vision, language, and other AI-level tasks), one may need deep architectures. Deep architectures are composed of multiple levels of non-linear operations, such as in neural nets with many hidden layers or in complicated propositional formulae re-using many sub-formulae. Searching the parameter space of deep architectures is a difficult task, but learning algorithms such as those for Deep Belief Networks have recently been proposed to tackle this problem with notable success, beating the state-of-the-art in certain areas. This paper discusses the motivations and principles regarding learning algorithms for deep architectures, in particular those exploiting as building blocks unsupervised learning of single-layer models such as Restricted Boltzmann Machines, used to construct deeper models such as Deep Belief Networks.