Tensor Network Contractions

Download Tensor Network Contractions PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3030344894
Total Pages : 160 pages
Book Rating : 4.0/5 (33 download)

DOWNLOAD NOW!


Book Synopsis Tensor Network Contractions by : Shi-Ju Ran

Download or read book Tensor Network Contractions written by Shi-Ju Ran and published by Springer Nature. This book was released on 2020-01-27 with total page 160 pages. Available in PDF, EPUB and Kindle. Book excerpt: Tensor network is a fundamental mathematical tool with a huge range of applications in physics, such as condensed matter physics, statistic physics, high energy physics, and quantum information sciences. This open access book aims to explain the tensor network contraction approaches in a systematic way, from the basic definitions to the important applications. This book is also useful to those who apply tensor networks in areas beyond physics, such as machine learning and the big-data analysis. Tensor network originates from the numerical renormalization group approach proposed by K. G. Wilson in 1975. Through a rapid development in the last two decades, tensor network has become a powerful numerical tool that can efficiently simulate a wide range of scientific problems, with particular success in quantum many-body physics. Varieties of tensor network algorithms have been proposed for different problems. However, the connections among different algorithms are not well discussed or reviewed. To fill this gap, this book explains the fundamental concepts and basic ideas that connect and/or unify different strategies of the tensor network contraction algorithms. In addition, some of the recent progresses in dealing with tensor decomposition techniques and quantum simulations are also represented in this book to help the readers to better understand tensor network. This open access book is intended for graduated students, but can also be used as a professional book for researchers in the related fields. To understand most of the contents in the book, only basic knowledge of quantum mechanics and linear algebra is required. In order to fully understand some advanced parts, the reader will need to be familiar with notion of condensed matter physics and quantum information, that however are not necessary to understand the main parts of the book. This book is a good source for non-specialists on quantum physics to understand tensor network algorithms and the related mathematics.

Introduction to Tensor Network Methods

Download Introduction to Tensor Network Methods PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3030014096
Total Pages : 172 pages
Book Rating : 4.0/5 (3 download)

DOWNLOAD NOW!


Book Synopsis Introduction to Tensor Network Methods by : Simone Montangero

Download or read book Introduction to Tensor Network Methods written by Simone Montangero and published by Springer. This book was released on 2018-11-28 with total page 172 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume of lecture notes briefly introduces the basic concepts needed in any computational physics course: software and hardware, programming skills, linear algebra, and differential calculus. It then presents more advanced numerical methods to tackle the quantum many-body problem: it reviews the numerical renormalization group and then focuses on tensor network methods, from basic concepts to gauge invariant ones. Finally, in the last part, the author presents some applications of tensor network methods to equilibrium and out-of-equilibrium correlated quantum matter. The book can be used for a graduate computational physics course. After successfully completing such a course, a student should be able to write a tensor network program and can begin to explore the physics of many-body quantum systems. The book can also serve as a reference for researchers working or starting out in the field.

Emergent Phenomena in Correlated Matter

Download Emergent Phenomena in Correlated Matter PDF Online Free

Author :
Publisher : Forschungszentrum Jülich
ISBN 13 : 3893368841
Total Pages : 562 pages
Book Rating : 4.8/5 (933 download)

DOWNLOAD NOW!


Book Synopsis Emergent Phenomena in Correlated Matter by : Eva Pavarini

Download or read book Emergent Phenomena in Correlated Matter written by Eva Pavarini and published by Forschungszentrum Jülich. This book was released on 2013 with total page 562 pages. Available in PDF, EPUB and Kindle. Book excerpt:

A Mathematical Introduction to Electronic Structure Theory

Download A Mathematical Introduction to Electronic Structure Theory PDF Online Free

Author :
Publisher : SIAM
ISBN 13 : 1611975808
Total Pages : 138 pages
Book Rating : 4.6/5 (119 download)

DOWNLOAD NOW!


Book Synopsis A Mathematical Introduction to Electronic Structure Theory by : Lin Lin

Download or read book A Mathematical Introduction to Electronic Structure Theory written by Lin Lin and published by SIAM. This book was released on 2019-06-05 with total page 138 pages. Available in PDF, EPUB and Kindle. Book excerpt: Based on first principle quantum mechanics, electronic structure theory is widely used in physics, chemistry, materials science, and related fields and has recently received increasing research attention in applied and computational mathematics. This book provides a self-contained, mathematically oriented introduction to the subject and its associated algorithms and analysis. It will help applied mathematics students and researchers with minimal background in physics understand the basics of electronic structure theory and prepare them to conduct research in this area. The book begins with an elementary introduction of quantum mechanics, including the uncertainty principle and the Hartree?Fock theory, which is considered the starting point of modern electronic structure theory. The authors then provide an in-depth discussion of two carefully selected topics that are directly related to several aspects of modern electronic structure calculations: density matrix based algorithms and linear response theory. Chapter 2 introduces the Kohn?Sham density functional theory with a focus on the density matrix based numerical algorithms, and Chapter 3 introduces linear response theory, which provides a unified viewpoint of several important phenomena in physics and numerics. An understanding of these topics will prepare readers for more advanced topics in this field. The book concludes with the random phase approximation to the correlation energy. The book is written for advanced undergraduate and beginning graduate students, specifically those with mathematical backgrounds but without a priori knowledge of quantum mechanics, and can be used for self-study by researchers, instructors, and other scientists. The book can also serve as a starting point to learn about many-body perturbation theory, a topic at the frontier of the study of interacting electrons.

Tensor Networks for Dimensionality Reduction and Large-scale Optimization

Download Tensor Networks for Dimensionality Reduction and Large-scale Optimization PDF Online Free

Author :
Publisher :
ISBN 13 : 9781680832235
Total Pages : 180 pages
Book Rating : 4.8/5 (322 download)

DOWNLOAD NOW!


Book Synopsis Tensor Networks for Dimensionality Reduction and Large-scale Optimization by : Andrzej Cichocki

Download or read book Tensor Networks for Dimensionality Reduction and Large-scale Optimization written by Andrzej Cichocki and published by . This book was released on 2016 with total page 180 pages. Available in PDF, EPUB and Kindle. Book excerpt: Modern applications in engineering and data science are increasingly based on multidimensional data of exceedingly high volume, variety, and structural richness. However, standard machine learning algorithms typically scale exponentially with data volume and complexity of cross-modal couplings - the so called curse of dimensionality - which is prohibitive to the analysis of large-scale, multi-modal and multi-relational datasets. Given that such data are often efficiently represented as multiway arrays or tensors, it is therefore timely and valuable for the multidisciplinary machine learning and data analytic communities to review low-rank tensor decompositions and tensor networks as emerging tools for dimensionality reduction and large scale optimization problems. Our particular emphasis is on elucidating that, by virtue of the underlying low-rank approximations, tensor networks have the ability to alleviate the curse of dimensionality in a number of applied areas. In Part 1 of this monograph we provide innovative solutions to low-rank tensor network decompositions and easy to interpret graphical representations of the mathematical operations on tensor networks. Such a conceptual insight allows for seamless migration of ideas from the flat-view matrices to tensor network operations and vice versa, and provides a platform for further developments, practical applications, and non-Euclidean extensions. It also permits the introduction of various tensor network operations without an explicit notion of mathematical expressions, which may be beneficial for many research communities that do not directly rely on multilinear algebra. Our focus is on the Tucker and tensor train (TT) decompositions and their extensions, and on demonstrating the ability of tensor networks to provide linearly or even super-linearly (e.g., logarithmically) scalable solutions, as illustrated in detail in Part 2 of this monograph.

Holographic Entanglement Entropy

Download Holographic Entanglement Entropy PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3319525735
Total Pages : 245 pages
Book Rating : 4.3/5 (195 download)

DOWNLOAD NOW!


Book Synopsis Holographic Entanglement Entropy by : Mukund Rangamani

Download or read book Holographic Entanglement Entropy written by Mukund Rangamani and published by Springer. This book was released on 2017-05-08 with total page 245 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a comprehensive overview of developments in the field of holographic entanglement entropy. Within the context of the AdS/CFT correspondence, it is shown how quantum entanglement is computed by the area of certain extremal surfaces. The general lessons one can learn from this connection are drawn out for quantum field theories, many-body physics, and quantum gravity. An overview of the necessary background material is provided together with a flavor of the exciting open questions that are currently being discussed. The book is divided into four main parts. In the first part, the concept of entanglement, and methods for computing it, in quantum field theories is reviewed. In the second part, an overview of the AdS/CFT correspondence is given and the holographic entanglement entropy prescription is explained. In the third part, the time-dependence of entanglement entropy in out-of-equilibrium systems, and applications to many body physics are explored using holographic methods. The last part focuses on the connection between entanglement and geometry. Known constraints on the holographic map, as well as, elaboration of entanglement being a fundamental building block of geometry are explained. The book is a useful resource for researchers and graduate students interested in string theory and holography, condensed matter and quantum information, as it tries to connect these different subjects linked by the common theme of quantum entanglement.

Machine Learning Meets Quantum Physics

Download Machine Learning Meets Quantum Physics PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3030402452
Total Pages : 473 pages
Book Rating : 4.0/5 (34 download)

DOWNLOAD NOW!


Book Synopsis Machine Learning Meets Quantum Physics by : Kristof T. Schütt

Download or read book Machine Learning Meets Quantum Physics written by Kristof T. Schütt and published by Springer Nature. This book was released on 2020-06-03 with total page 473 pages. Available in PDF, EPUB and Kindle. Book excerpt: Designing molecules and materials with desired properties is an important prerequisite for advancing technology in our modern societies. This requires both the ability to calculate accurate microscopic properties, such as energies, forces and electrostatic multipoles of specific configurations, as well as efficient sampling of potential energy surfaces to obtain corresponding macroscopic properties. Tools that can provide this are accurate first-principles calculations rooted in quantum mechanics, and statistical mechanics, respectively. Unfortunately, they come at a high computational cost that prohibits calculations for large systems and long time-scales, thus presenting a severe bottleneck both for searching the vast chemical compound space and the stupendously many dynamical configurations that a molecule can assume. To overcome this challenge, recently there have been increased efforts to accelerate quantum simulations with machine learning (ML). This emerging interdisciplinary community encompasses chemists, material scientists, physicists, mathematicians and computer scientists, joining forces to contribute to the exciting hot topic of progressing machine learning and AI for molecules and materials. The book that has emerged from a series of workshops provides a snapshot of this rapidly developing field. It contains tutorial material explaining the relevant foundations needed in chemistry, physics as well as machine learning to give an easy starting point for interested readers. In addition, a number of research papers defining the current state-of-the-art are included. The book has five parts (Fundamentals, Incorporating Prior Knowledge, Deep Learning of Atomistic Representations, Atomistic Simulations and Discovery and Design), each prefaced by editorial commentary that puts the respective parts into a broader scientific context.

Progress in Group Field Theory and Related Quantum Gravity Formalisms

Download Progress in Group Field Theory and Related Quantum Gravity Formalisms PDF Online Free

Author :
Publisher : MDPI
ISBN 13 : 3039361783
Total Pages : 338 pages
Book Rating : 4.0/5 (393 download)

DOWNLOAD NOW!


Book Synopsis Progress in Group Field Theory and Related Quantum Gravity Formalisms by : Steffen Gielen

Download or read book Progress in Group Field Theory and Related Quantum Gravity Formalisms written by Steffen Gielen and published by MDPI. This book was released on 2020-07-01 with total page 338 pages. Available in PDF, EPUB and Kindle. Book excerpt: Following the fundamental insights from quantum mechanics and general relativity, geometry itself should have a quantum description; the search for a complete understanding of this description is what drives the field of quantum gravity. Group field theory is an ambitious framework in which theories of quantum geometry are formulated, incorporating successful ideas from the fields of matrix models, ten-sor models, spin foam models and loop quantum gravity, as well as from the broader areas of quantum field theory and mathematical physics. This special issue collects recent work in group field theory and these related approaches, as well as other neighbouring fields (e.g., cosmology, quantum information and quantum foundations, statistical physics) to the extent that these are directly relevant to quantum gravity research.

An Introduction to Quantum Computing

Download An Introduction to Quantum Computing PDF Online Free

Author :
Publisher : Oxford University Press
ISBN 13 : 0198570007
Total Pages : 287 pages
Book Rating : 4.1/5 (985 download)

DOWNLOAD NOW!


Book Synopsis An Introduction to Quantum Computing by : Phillip Kaye

Download or read book An Introduction to Quantum Computing written by Phillip Kaye and published by Oxford University Press. This book was released on 2007 with total page 287 pages. Available in PDF, EPUB and Kindle. Book excerpt: The authors provide an introduction to quantum computing. Aimed at advanced undergraduate and beginning graduate students in these disciplines, this text is illustrated with diagrams and exercises.

Density Matrix and Tensor Network Renormalization

Download Density Matrix and Tensor Network Renormalization PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 1009398717
Total Pages : 456 pages
Book Rating : 4.0/5 (93 download)

DOWNLOAD NOW!


Book Synopsis Density Matrix and Tensor Network Renormalization by : Tao Xiang

Download or read book Density Matrix and Tensor Network Renormalization written by Tao Xiang and published by Cambridge University Press. This book was released on 2023-08-31 with total page 456 pages. Available in PDF, EPUB and Kindle. Book excerpt: Renormalization group theory of tensor network states provides a powerful tool for studying quantum many-body problems and a new paradigm for understanding entangled structures of complex systems. In recent decades the theory has rapidly evolved into a universal framework and language employed by researchers in fields ranging from condensed matter theory to machine learning. This book presents a pedagogical and comprehensive introduction to this field for the first time. After an introductory survey on the major advances in tensor network algorithms and their applications, it introduces step-by-step the tensor network representations of quantum states and the tensor-network renormalization group methods developed over the past three decades. Basic statistical and condensed matter physics models are used to demonstrate how the tensor network renormalization works. An accessible primer for scientists and engineers, this book would also be ideal as a reference text for a graduate course in this area.

Supervised Learning with Quantum Computers

Download Supervised Learning with Quantum Computers PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3319964240
Total Pages : 293 pages
Book Rating : 4.3/5 (199 download)

DOWNLOAD NOW!


Book Synopsis Supervised Learning with Quantum Computers by : Maria Schuld

Download or read book Supervised Learning with Quantum Computers written by Maria Schuld and published by Springer. This book was released on 2018-08-30 with total page 293 pages. Available in PDF, EPUB and Kindle. Book excerpt: Quantum machine learning investigates how quantum computers can be used for data-driven prediction and decision making. The books summarises and conceptualises ideas of this relatively young discipline for an audience of computer scientists and physicists from a graduate level upwards. It aims at providing a starting point for those new to the field, showcasing a toy example of a quantum machine learning algorithm and providing a detailed introduction of the two parent disciplines. For more advanced readers, the book discusses topics such as data encoding into quantum states, quantum algorithms and routines for inference and optimisation, as well as the construction and analysis of genuine ``quantum learning models''. A special focus lies on supervised learning, and applications for near-term quantum devices.

Tensors: Geometry and Applications

Download Tensors: Geometry and Applications PDF Online Free

Author :
Publisher : American Mathematical Soc.
ISBN 13 : 0821869078
Total Pages : 464 pages
Book Rating : 4.8/5 (218 download)

DOWNLOAD NOW!


Book Synopsis Tensors: Geometry and Applications by : J. M. Landsberg

Download or read book Tensors: Geometry and Applications written by J. M. Landsberg and published by American Mathematical Soc.. This book was released on 2011-12-14 with total page 464 pages. Available in PDF, EPUB and Kindle. Book excerpt: Tensors are ubiquitous in the sciences. The geometry of tensors is both a powerful tool for extracting information from data sets, and a beautiful subject in its own right. This book has three intended uses: a classroom textbook, a reference work for researchers in the sciences, and an account of classical and modern results in (aspects of) the theory that will be of interest to researchers in geometry. For classroom use, there is a modern introduction to multilinear algebra and to the geometry and representation theory needed to study tensors, including a large number of exercises. For researchers in the sciences, there is information on tensors in table format for easy reference and a summary of the state of the art in elementary language. This is the first book containing many classical results regarding tensors. Particular applications treated in the book include the complexity of matrix multiplication, P versus NP, signal processing, phylogenetics, and algebraic statistics. For geometers, there is material on secant varieties, G-varieties, spaces with finitely many orbits and how these objects arise in applications, discussions of numerous open questions in geometry arising in applications, and expositions of advanced topics such as the proof of the Alexander-Hirschowitz theorem and of the Weyman-Kempf method for computing syzygies.

Supersymmetry in Disorder and Chaos

Download Supersymmetry in Disorder and Chaos PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 9780521663823
Total Pages : 470 pages
Book Rating : 4.6/5 (638 download)

DOWNLOAD NOW!


Book Synopsis Supersymmetry in Disorder and Chaos by : Konstantin Efetov

Download or read book Supersymmetry in Disorder and Chaos written by Konstantin Efetov and published by Cambridge University Press. This book was released on 1999-09-13 with total page 470 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a comprehensive treatment of the ideas and applications of supersymmetry.

Manipulating Quantum Systems

Download Manipulating Quantum Systems PDF Online Free

Author :
Publisher : National Academies Press
ISBN 13 : 0309499542
Total Pages : 315 pages
Book Rating : 4.3/5 (94 download)

DOWNLOAD NOW!


Book Synopsis Manipulating Quantum Systems by : National Academies of Sciences, Engineering, and Medicine

Download or read book Manipulating Quantum Systems written by National Academies of Sciences, Engineering, and Medicine and published by National Academies Press. This book was released on 2020-09-14 with total page 315 pages. Available in PDF, EPUB and Kindle. Book excerpt: The field of atomic, molecular, and optical (AMO) science underpins many technologies and continues to progress at an exciting pace for both scientific discoveries and technological innovations. AMO physics studies the fundamental building blocks of functioning matter to help advance the understanding of the universe. It is a foundational discipline within the physical sciences, relating to atoms and their constituents, to molecules, and to light at the quantum level. AMO physics combines fundamental research with practical application, coupling fundamental scientific discovery to rapidly evolving technological advances, innovation and commercialization. Due to the wide-reaching intellectual, societal, and economical impact of AMO, it is important to review recent advances and future opportunities in AMO physics. Manipulating Quantum Systems: An Assessment of Atomic, Molecular, and Optical Physics in the United States assesses opportunities in AMO science and technology over the coming decade. Key topics in this report include tools made of light; emerging phenomena from few- to many-body systems; the foundations of quantum information science and technologies; quantum dynamics in the time and frequency domains; precision and the nature of the universe, and the broader impact of AMO science.

Coarse Graining in Quantum Gravity: Bridging the Gap between Microscopic Models and Spacetime-Physics

Download Coarse Graining in Quantum Gravity: Bridging the Gap between Microscopic Models and Spacetime-Physics PDF Online Free

Author :
Publisher : Frontiers Media SA
ISBN 13 : 2889710491
Total Pages : 298 pages
Book Rating : 4.8/5 (897 download)

DOWNLOAD NOW!


Book Synopsis Coarse Graining in Quantum Gravity: Bridging the Gap between Microscopic Models and Spacetime-Physics by : Astrid Eichhorn

Download or read book Coarse Graining in Quantum Gravity: Bridging the Gap between Microscopic Models and Spacetime-Physics written by Astrid Eichhorn and published by Frontiers Media SA. This book was released on 2021-07-15 with total page 298 pages. Available in PDF, EPUB and Kindle. Book excerpt:

An Introduction to Integrable Techniques for One-Dimensional Quantum Systems

Download An Introduction to Integrable Techniques for One-Dimensional Quantum Systems PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3319484877
Total Pages : 186 pages
Book Rating : 4.3/5 (194 download)

DOWNLOAD NOW!


Book Synopsis An Introduction to Integrable Techniques for One-Dimensional Quantum Systems by : Fabio Franchini

Download or read book An Introduction to Integrable Techniques for One-Dimensional Quantum Systems written by Fabio Franchini and published by Springer. This book was released on 2017-05-25 with total page 186 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book introduces the reader to basic notions of integrable techniques for one-dimensional quantum systems. In a pedagogical way, a few examples of exactly solvable models are worked out to go from the coordinate approach to the Algebraic Bethe Ansatz, with some discussion on the finite temperature thermodynamics. The aim is to provide the instruments to approach more advanced books or to allow for a critical reading of research articles and the extraction of useful information from them. We describe the solution of the anisotropic XY spin chain; of the Lieb-Liniger model of bosons with contact interaction at zero and finite temperature; and of the XXZ spin chain, first in the coordinate and then in the algebraic approach. To establish the connection between the latter and the solution of two dimensional classical models, we also introduce and solve the 6-vertex model. Finally, the low energy physics of these integrable models is mapped into the corresponding conformal field theory. Through its style and the choice of topics, this book tries to touch all fundamental ideas behind integrability and is meant for students and researchers interested either in an introduction to later delve in the advance aspects of Bethe Ansatz or in an overview of the topic for broadening their culture.

Artificial Intelligence and Quantum Computing for Advanced Wireless Networks

Download Artificial Intelligence and Quantum Computing for Advanced Wireless Networks PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 1119790298
Total Pages : 884 pages
Book Rating : 4.1/5 (197 download)

DOWNLOAD NOW!


Book Synopsis Artificial Intelligence and Quantum Computing for Advanced Wireless Networks by : Savo G. Glisic

Download or read book Artificial Intelligence and Quantum Computing for Advanced Wireless Networks written by Savo G. Glisic and published by John Wiley & Sons. This book was released on 2022-04-11 with total page 884 pages. Available in PDF, EPUB and Kindle. Book excerpt: ARTIFICIAL INTELLIGENCE AND QUANTUM COMPUTING FOR ADVANCED WIRELESS NETWORKS A comprehensive presentation of the implementation of artificial intelligence and quantum computing technology in large-scale communication networks Increasingly dense and flexible wireless networks require the use of artificial intelligence (AI) for planning network deployment, optimization, and dynamic control. Machine learning algorithms are now often used to predict traffic and network state in order to reserve resources for smooth communication with high reliability and low latency. In Artificial Intelligence and Quantum Computing for Advanced Wireless Networks, the authors deliver a practical and timely review of AI-based learning algorithms, with several case studies in both Python and R. The book discusses the game-theory-based learning algorithms used in decision making, along with various specific applications in wireless networks, like channel, network state, and traffic prediction. Additional chapters include Fundamentals of ML, Artificial Neural Networks (NN), Explainable and Graph NN, Learning Equilibria and Games, AI Algorithms in Networks, Fundamentals of Quantum Communications, Quantum Channel, Information Theory and Error Correction, Quantum Optimization Theory, and Quantum Internet, to name a few. The authors offer readers an intuitive and accessible path from basic topics on machine learning through advanced concepts and techniques in quantum networks. Readers will benefit from: A thorough introduction to the fundamentals of machine learning algorithms, including linear and logistic regression, decision trees, random forests, bagging, boosting, and support vector machines An exploration of artificial neural networks, including multilayer neural networks, training and backpropagation, FIR architecture spatial-temporal representations, quantum ML, quantum information theory, fundamentals of quantum internet, and more Discussions of explainable neural networks and XAI Examinations of graph neural networks, including learning algorithms and linear and nonlinear GNNs in both classical and quantum computing technology Perfect for network engineers, researchers, and graduate and masters students in computer science and electrical engineering, Artificial Intelligence and Quantum Computing for Advanced Wireless Networks is also an indispensable resource for IT support staff, along with policymakers and regulators who work in technology.