Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Ten Daat
Download Ten Daat full books in PDF, epub, and Kindle. Read online Ten Daat ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis The Seductiveness of Jewish Myth by : S. Daniel Breslauer
Download or read book The Seductiveness of Jewish Myth written by S. Daniel Breslauer and published by SUNY Press. This book was released on 1997-07-10 with total page 330 pages. Available in PDF, EPUB and Kindle. Book excerpt: A collection of essays focusing on myth in Judaism from biblical to modern times, this book offers a sense of the great diversity of the Jewish religion.
Book Synopsis Modern Scholarship in the Study of Torah by : Shalom Carmy
Download or read book Modern Scholarship in the Study of Torah written by Shalom Carmy and published by Jason Aronson, Incorporated. This book was released on 1996-07-01 with total page 319 pages. Available in PDF, EPUB and Kindle. Book excerpt: From the Preface: "The principal thrust of this book is to challenge the compartmentalization to which we seem all too easily resigned, to discover whether, and to what extent, the methods of modern scholarship can become part and parcel of the study of Torah, conceived as a religious-intellectual way of life. Not 'Modern Scholarship and the Study of Torah,' but 'Modern Scholarship in the Study of Torah."
Book Synopsis Executing Data Quality Projects by : Danette McGilvray
Download or read book Executing Data Quality Projects written by Danette McGilvray and published by Elsevier. This book was released on 2008-09-01 with total page 353 pages. Available in PDF, EPUB and Kindle. Book excerpt: Information is currency. Recent studies show that data quality problems are costing businesses billions of dollars each year, with poor data linked to waste and inefficiency, damaged credibility among customers and suppliers, and an organizational inability to make sound decisions. In this important and timely new book, Danette McGilvray presents her "Ten Steps approach to information quality, a proven method for both understanding and creating information quality in the enterprise. Her trademarked approach—in which she has trained Fortune 500 clients and hundreds of workshop attendees—applies to all types of data and to all types of organizations.* Includes numerous templates, detailed examples, and practical advice for executing every step of the "Ten Steps approach.* Allows for quick reference with an easy-to-use format highlighting key concepts and definitions, important checkpoints, communication activities, and best practices.* A companion Web site includes links to numerous data quality resources, including many of the planning and information-gathering templates featured in the text, quick summaries of key ideas from the Ten Step methodology, and other tools and information available online.
Book Synopsis Advances in Data Mining - Theoretical Aspects and Applications by : Petra Perner
Download or read book Advances in Data Mining - Theoretical Aspects and Applications written by Petra Perner and published by Springer. This book was released on 2007-08-18 with total page 362 pages. Available in PDF, EPUB and Kindle. Book excerpt: The papers in this volume represent the proceedings of the 7th Industrial Conference on Data Mining. They are organized into topical sections on aspects of classification and prediction, clustering, web mining, data mining in medicine, applications of data mining, time series and frequent pattern mining, and association rule mining. Readers gain new insights into theories underlying data mining and discover state-of-the-technology applications.
Author :Nandi Dr. Rupam Dr. Gypsy, Kumar Sharma Publisher :BPB Publications ISBN 13 :938984567X Total Pages :580 pages Book Rating :4.3/5 (898 download)
Book Synopsis Data Science Fundamentals and Practical Approaches by : Nandi Dr. Rupam Dr. Gypsy, Kumar Sharma
Download or read book Data Science Fundamentals and Practical Approaches written by Nandi Dr. Rupam Dr. Gypsy, Kumar Sharma and published by BPB Publications. This book was released on 2020-09-03 with total page 580 pages. Available in PDF, EPUB and Kindle. Book excerpt: Learn how to process and analysis data using Python Key Features a- The book has theories explained elaborately along with Python code and corresponding output to support the theoretical explanations. The Python codes are provided with step-by-step comments to explain each instruction of the code. a- The book is quite well balanced with programs and illustrative real-case problems. a- The book not only deals with the background mathematics alone or only the programs but also beautifully correlates the background mathematics to the theory and then finally translating it into the programs. a- A rich set of chapter-end exercises are provided, consisting of both short-answer questions and long-answer questions. Description This book introduces the fundamental concepts of Data Science, which has proved to be a major game-changer in business solving problems. Topics covered in the book include fundamentals of Data Science, data preprocessing, data plotting and visualization, statistical data analysis, machine learning for data analysis, time-series analysis, deep learning for Data Science, social media analytics, business analytics, and Big Data analytics. The content of the book describes the fundamentals of each of the Data Science related topics together with illustrative examples as to how various data analysis techniques can be implemented using different tools and libraries of Python programming language. Each chapter contains numerous examples and illustrative output to explain the important basic concepts. An appropriate number of questions is presented at the end of each chapter for self-assessing the conceptual understanding. The references presented at the end of every chapter will help the readers to explore more on a given topic. What will you learn a- Understand what machine learning is and how learning can be incorporated into a program. a- Perform data processing to make it ready for visual plot to understand the pattern in data over time. a- Know how tools can be used to perform analysis on big data using python a- Perform social media analytics, business analytics, and data analytics on any data of a company or organization. Who this book is for The book is for readers with basic programming and mathematical skills. The book is for any engineering graduates that wish to apply data science in their projects or wish to build a career in this direction. The book can be read by anyone who has an interest in data analysis and would like to explore more out of interest or to apply it to certain real-life problems. Table of Contents 1. Fundamentals of Data Science1 2. Data Preprocessing 3. Data Plotting and Visualization 4. Statistical Data Analysis 5. Machine Learning for Data Science 6. Time-Series Analysis 7. Deep Learning for Data Science 8. Social Media Analytics 9. Business Analytics 10. Big Data Analytics About the Authors Dr. Gypsy Nandi is an Assistant Professor (Sr) in the Department of Computer Applications, Assam Don Bosco University, India. Her areas of interest include Data Science, Social Network Mining, and Machine Learning. She has completed her Ph.D. in the field of 'Social Network Analysis and Mining'. Her research scholars are currently working mainly in the field of Data Science. She has several research publications in reputed journals and book series. Dr. Rupam Kumar Sharma is an Assistant Professor in the Department of Computer Applications, Assam Don Bosco University, India. His area of interest includes Machine Learning, Data Analytics, Network, and Cyber Security. He has several research publications in reputed SCI and Scopus journals. He has also delivered lectures and trained hundreds of trainees and students across different institutes in the field of security and android app development.
Book Synopsis The IT Professional's Merger and Acquisition Handbook by : Dewey Ray
Download or read book The IT Professional's Merger and Acquisition Handbook written by Dewey Ray and published by Cognitive Diligence, LLC. This book was released on 2012-11 with total page 510 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis Data Model Scorecard by : Steve Hoberman
Download or read book Data Model Scorecard written by Steve Hoberman and published by Technics Publications. This book was released on 2015-11-01 with total page 124 pages. Available in PDF, EPUB and Kindle. Book excerpt: Data models are the main medium used to communicate data requirements from business to IT, and within IT from analysts, modelers, and architects, to database designers and developers. Therefore it’s essential to get the data model right. But how do you determine right? That’s where the Data Model Scorecard® comes in. The Data Model Scorecard is a data model quality scoring tool containing ten categories aimed at improving the quality of your organization’s data models. Many of my consulting assignments are dedicated to applying the Data Model Scorecard to my client’s data models – I will show you how to apply the Scorecard in this book. This book, written for people who build, use, or review data models, contains the Data Model Scorecard template and an explanation along with many examples of each of the ten Scorecard categories. There are three sections: In Section I, Data Modeling and the Need for Validation, receive a short data modeling primer in Chapter 1, understand why it is important to get the data model right in Chapter 2, and learn about the Data Model Scorecard in Chapter 3. In Section II, Data Model Scorecard Categories, we will explain each of the ten categories of the Data Model Scorecard. There are ten chapters in this section, each chapter dedicated to a specific Scorecard category: · Chapter 4: Correctness · Chapter 5: Completeness · Chapter 6: Scheme · Chapter 7: Structure · Chapter 8: Abstraction · Chapter 9: Standards · Chapter 10: Readability · Chapter 11: Definitions · Chapter 12: Consistency · Chapter 13: Data In Section III, Validating Data Models, we will prepare for the model review (Chapter 14), cover tips to help during the model review (Chapter 15), and then review a data model based upon an actual project (Chapter 16).
Book Synopsis Python for Data Science For Dummies by : John Paul Mueller
Download or read book Python for Data Science For Dummies written by John Paul Mueller and published by John Wiley & Sons. This book was released on 2023-11-07 with total page 471 pages. Available in PDF, EPUB and Kindle. Book excerpt: Let Python do the heavy lifting for you as you analyze large datasets Python for Data Science For Dummies lets you get your hands dirty with data using one of the top programming languages. This beginner’s guide takes you step by step through getting started, performing data analysis, understanding datasets and example code, working with Google Colab, sampling data, and beyond. Coding your data analysis tasks will make your life easier, make you more in-demand as an employee, and open the door to valuable knowledge and insights. This new edition is updated for the latest version of Python and includes current, relevant data examples. Get a firm background in the basics of Python coding for data analysis Learn about data science careers you can pursue with Python coding skills Integrate data analysis with multimedia and graphics Manage and organize data with cloud-based relational databases Python careers are on the rise. Grab this user-friendly Dummies guide and gain the programming skills you need to become a data pro.
Book Synopsis Data Analysis and Classification by : Francesco Palumbo
Download or read book Data Analysis and Classification written by Francesco Palumbo and published by Springer Science & Business Media. This book was released on 2010-03-14 with total page 473 pages. Available in PDF, EPUB and Kindle. Book excerpt: The volume provides results from the latest methodological developments in data analysis and classification and highlights new emerging subjects within the field. It contains articles about statistical models, classification, cluster analysis, multidimensional scaling, multivariate analysis, latent variables, knowledge extraction from temporal data, financial and economic applications, and missing values. Papers cover both theoretical and empirical aspects.
Book Synopsis Handbook of Research on Organizational Transformations through Big Data Analytics by : Tavana, Madjid
Download or read book Handbook of Research on Organizational Transformations through Big Data Analytics written by Tavana, Madjid and published by IGI Global. This book was released on 2014-11-30 with total page 561 pages. Available in PDF, EPUB and Kindle. Book excerpt: Big data analytics utilizes a wide range of software and analytical tools to provide immediate, relevant information for efficient decision-making. Companies are recognizing the immense potential of BDA, but ensuring the data is appropriate and error-free is the largest hurdle in implementing BDA applications. The Handbook of Research on Organizational Transformations through Big Data Analytics not only catalogues the existing platforms and technologies, it explores new trends within the field of big data analytics (BDA). Containing new and existing research materials and insights on the various approaches to BDA; this publication is intended for researchers, IT professionals, and CIOs interested in the best ways to implement BDA applications and technologies.
Book Synopsis Advances in Knowledge Discovery and Data Mining by : Takashi Washio
Download or read book Advances in Knowledge Discovery and Data Mining written by Takashi Washio and published by Springer. This book was released on 2008-05-11 with total page 1126 pages. Available in PDF, EPUB and Kindle. Book excerpt: ThePaci?c-AsiaConferenceonKnowledgeDiscoveryandDataMining(PAKDD) has been held every year since 1997. PAKDD 2008, the 12th in the series, was heldatOsaka,JapanduringMay20–23,2008.PAKDDisaleadinginternational conference in the area of data mining. It provides an international forum for - searchers and industry practitioners to share their new ideas, original research results, and practical development experiences from all KDD-related areas - cluding data mining, data warehousing, machine learning, databases, statistics, knowledge acquisition, automatic scienti?c discovery, data visualization, causal induction, and knowledge-based systems. This year we received a total of 312 research papers from 34 countries and regions in Asia, Australia, North America, South America, Europe, and Africa. Every submitted paper was rigorously reviewed by two or three reviewers, d- cussed by the reviewers under the supervision of an Area Chair, and judged by the Program Committee Chairs. When there was a disagreement, the Area Chair and/or the Program Committee Chairs provided an additional review. Thus, many submissions were reviewed by four experts. The Program Comm- tee members were deeply involved in a highly selective process. As a result, only approximately11.9%ofthe312submissionswereacceptedaslongpapers,12.8% of them were accepted as regular papers, and 11.5% of them were accepted as short papers.
Book Synopsis Journey to Improvement by : Alicia Grunow
Download or read book Journey to Improvement written by Alicia Grunow and published by Rowman & Littlefield. This book was released on 2024-04-24 with total page 279 pages. Available in PDF, EPUB and Kindle. Book excerpt: The challenges we face in education, health care, and social welfare are multifaceted, reflecting the complex systems in which we live. Out of urgency and often the best of intentions, organizations implement new policies, technologies, and other innovations to tackle these issues, and hope for the best. However, addressing these challenges requires more than heroic individuals with silver-bullet solutions. We need teams with diverse expertise that know how to learn together and use their collective knowledge to redesign our social systems for the improved well-being of our communities. Journey to Improvement serves as a road map for teams that are ready to follow a different path to better outcomes. Drawing on their decades of on-the-ground experience, the authors walk teams through the phases of an improvement journey from launching the team to trying ideas in practice to spreading those that work. This book highlights the personal, relational, and technical aspects of taking an improvement science approach and illustrates these ideas through real-world examples from across the social sector and around the world.
Book Synopsis Predictive Analytics and Data Mining by : Vijay Kotu
Download or read book Predictive Analytics and Data Mining written by Vijay Kotu and published by Morgan Kaufmann. This book was released on 2014-11-27 with total page 447 pages. Available in PDF, EPUB and Kindle. Book excerpt: Put Predictive Analytics into ActionLearn the basics of Predictive Analysis and Data Mining through an easy to understand conceptual framework and immediately practice the concepts learned using the open source RapidMiner tool. Whether you are brand new to Data Mining or working on your tenth project, this book will show you how to analyze data, uncover hidden patterns and relationships to aid important decisions and predictions. Data Mining has become an essential tool for any enterprise that collects, stores and processes data as part of its operations. This book is ideal for business users, data analysts, business analysts, business intelligence and data warehousing professionals and for anyone who wants to learn Data Mining.You’ll be able to:1. Gain the necessary knowledge of different data mining techniques, so that you can select the right technique for a given data problem and create a general purpose analytics process.2. Get up and running fast with more than two dozen commonly used powerful algorithms for predictive analytics using practical use cases.3. Implement a simple step-by-step process for predicting an outcome or discovering hidden relationships from the data using RapidMiner, an open source GUI based data mining tool Predictive analytics and Data Mining techniques covered: Exploratory Data Analysis, Visualization, Decision trees, Rule induction, k-Nearest Neighbors, Naïve Bayesian, Artificial Neural Networks, Support Vector machines, Ensemble models, Bagging, Boosting, Random Forests, Linear regression, Logistic regression, Association analysis using Apriori and FP Growth, K-Means clustering, Density based clustering, Self Organizing Maps, Text Mining, Time series forecasting, Anomaly detection and Feature selection. Implementation files can be downloaded from the book companion site at www.LearnPredictiveAnalytics.com Demystifies data mining concepts with easy to understand language Shows how to get up and running fast with 20 commonly used powerful techniques for predictive analysis Explains the process of using open source RapidMiner tools Discusses a simple 5 step process for implementing algorithms that can be used for performing predictive analytics Includes practical use cases and examples
Book Synopsis Python Data Analytics by : Fabio Nelli
Download or read book Python Data Analytics written by Fabio Nelli and published by Apress. This book was released on 2015-08-25 with total page 350 pages. Available in PDF, EPUB and Kindle. Book excerpt: Python Data Analytics will help you tackle the world of data acquisition and analysis using the power of the Python language. At the heart of this book lies the coverage of pandas, an open source, BSD-licensed library providing high-performance, easy-to-use data structures and data analysis tools for the Python programming language. Author Fabio Nelli expertly shows the strength of the Python programming language when applied to processing, managing and retrieving information. Inside, you will see how intuitive and flexible it is to discover and communicate meaningful patterns of data using Python scripts, reporting systems, and data export. This book examines how to go about obtaining, processing, storing, managing and analyzing data using the Python programming language. You will use Python and other open source tools to wrangle data and tease out interesting and important trends in that data that will allow you to predict future patterns. Whether you are dealing with sales data, investment data (stocks, bonds, etc.), medical data, web page usage, or any other type of data set, Python can be used to interpret, analyze, and glean information from a pile of numbers and statistics. This book is an invaluable reference with its examples of storing and accessing data in a database; it walks you through the process of report generation; it provides three real world case studies or examples that you can take with you for your everyday analysis needs.
Book Synopsis Data Governance for Managers by : Lars Michael Bollweg
Download or read book Data Governance for Managers written by Lars Michael Bollweg and published by Springer Nature. This book was released on 2022-05-13 with total page 167 pages. Available in PDF, EPUB and Kindle. Book excerpt: Professional data management is the foundation for the successful digital transformation of traditional companies. Unfortunately, many companies fail to implement data governance because they do not fully understand the complexity of the challenge (organizational structure, employee empowerment, change management, etc.) and therefore do not include all aspects in the planning and implementation of their data governance. This book explains the driving role that a responsive data organization can play in a company's digital transformation. Using proven process models, the book takes readers from the basics, through planning and implementation, to regular operations and measuring the success of data governance. All the important decision points are highlighted, and the advantages and disadvantages are discussed in order to identify digitization potential, implement it in the company, and develop customized data governance. The book will serve as a useful guide for interested newcomers as well as for experienced managers.
Book Synopsis Principles and Theory for Data Mining and Machine Learning by : Bertrand Clarke
Download or read book Principles and Theory for Data Mining and Machine Learning written by Bertrand Clarke and published by Springer Science & Business Media. This book was released on 2009-07-21 with total page 786 pages. Available in PDF, EPUB and Kindle. Book excerpt: Extensive treatment of the most up-to-date topics Provides the theory and concepts behind popular and emerging methods Range of topics drawn from Statistics, Computer Science, and Electrical Engineering
Book Synopsis Privacy in the Age of Big Data by : Theresa Payton
Download or read book Privacy in the Age of Big Data written by Theresa Payton and published by Rowman & Littlefield. This book was released on 2014-01-16 with total page 277 pages. Available in PDF, EPUB and Kindle. Book excerpt: Digital devices have made our busy lives a little easier and they do great things for us, too – we get just-in-time coupons, directions, and connection with loved ones while stuck on an airplane runway. Yet, these devices, though we love them, can invade our privacy in ways we are not even aware of. The digital devices send and collect data about us whenever we use them, but that data is not always safeguarded the way we assume it should be to protect our privacy. Privacy is complex and personal. Many of us do not know the full extent to which data is collected, stored, aggregated, and used. As recent revelations indicate, we are subject to a level of data collection and surveillance never before imaginable. While some of these methods may, in fact, protect us and provide us with information and services we deem to be helpful and desired, others can turn out to be insidious and over-arching. Privacy in the Age of Big Data highlights the many positive outcomes of digital surveillance and data collection while also outlining those forms of data collection to which we do not always consent, and of which we are likely unaware, as well as the dangers inherent in such surveillance and tracking. Payton and Claypoole skillfully introduce readers to the many ways we are “watched” and how to change behaviors and activities to recapture and regain more of our privacy. The authors suggest remedies from tools, to behavior changes, to speaking out to politicians to request their privacy back. Anyone who uses digital devices for any reason will want to read this book for its clear and no-nonsense approach to the world of big data and what it means for all of us.