Taylor Approximations for Stochastic Partial Differential Equations

Download Taylor Approximations for Stochastic Partial Differential Equations PDF Online Free

Author :
Publisher : SIAM
ISBN 13 : 9781611972016
Total Pages : 234 pages
Book Rating : 4.9/5 (72 download)

DOWNLOAD NOW!


Book Synopsis Taylor Approximations for Stochastic Partial Differential Equations by : Arnulf Jentzen

Download or read book Taylor Approximations for Stochastic Partial Differential Equations written by Arnulf Jentzen and published by SIAM. This book was released on 2011-01-01 with total page 234 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents a systematic theory of Taylor expansions of evolutionary-type stochastic partial differential equations (SPDEs). The authors show how Taylor expansions can be used to derive higher order numerical methods for SPDEs, with a focus on pathwise and strong convergence. In the case of multiplicative noise, the driving noise process is assumed to be a cylindrical Wiener process, while in the case of additive noise the SPDE is assumed to be driven by an arbitrary stochastic process with Hl̲der continuous sample paths. Recent developments on numerical methods for random and stochastic ordinary differential equations are also included since these are relevant for solving spatially discretised SPDEs as well as of interest in their own right. The authors include the proof of an existence and uniqueness theorem under general assumptions on the coefficients as well as regularity estimates in an appendix.

Applied Stochastic Differential Equations

Download Applied Stochastic Differential Equations PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 1316510085
Total Pages : 327 pages
Book Rating : 4.3/5 (165 download)

DOWNLOAD NOW!


Book Synopsis Applied Stochastic Differential Equations by : Simo Särkkä

Download or read book Applied Stochastic Differential Equations written by Simo Särkkä and published by Cambridge University Press. This book was released on 2019-05-02 with total page 327 pages. Available in PDF, EPUB and Kindle. Book excerpt: With this hands-on introduction readers will learn what SDEs are all about and how they should use them in practice.

Effective Dynamics of Stochastic Partial Differential Equations

Download Effective Dynamics of Stochastic Partial Differential Equations PDF Online Free

Author :
Publisher : Elsevier
ISBN 13 : 0128012692
Total Pages : 283 pages
Book Rating : 4.1/5 (28 download)

DOWNLOAD NOW!


Book Synopsis Effective Dynamics of Stochastic Partial Differential Equations by : Jinqiao Duan

Download or read book Effective Dynamics of Stochastic Partial Differential Equations written by Jinqiao Duan and published by Elsevier. This book was released on 2014-03-06 with total page 283 pages. Available in PDF, EPUB and Kindle. Book excerpt: Effective Dynamics of Stochastic Partial Differential Equations focuses on stochastic partial differential equations with slow and fast time scales, or large and small spatial scales. The authors have developed basic techniques, such as averaging, slow manifolds, and homogenization, to extract effective dynamics from these stochastic partial differential equations. The authors' experience both as researchers and teachers enable them to convert current research on extracting effective dynamics of stochastic partial differential equations into concise and comprehensive chapters. The book helps readers by providing an accessible introduction to probability tools in Hilbert space and basics of stochastic partial differential equations. Each chapter also includes exercises and problems to enhance comprehension. - New techniques for extracting effective dynamics of infinite dimensional dynamical systems under uncertainty - Accessible introduction to probability tools in Hilbert space and basics of stochastic partial differential equations - Solutions or hints to all Exercises

Numerical Solution of Stochastic Differential Equations

Download Numerical Solution of Stochastic Differential Equations PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 3662126168
Total Pages : 666 pages
Book Rating : 4.6/5 (621 download)

DOWNLOAD NOW!


Book Synopsis Numerical Solution of Stochastic Differential Equations by : Peter E. Kloeden

Download or read book Numerical Solution of Stochastic Differential Equations written by Peter E. Kloeden and published by Springer Science & Business Media. This book was released on 2013-04-17 with total page 666 pages. Available in PDF, EPUB and Kindle. Book excerpt: The numerical analysis of stochastic differential equations (SDEs) differs significantly from that of ordinary differential equations. This book provides an easily accessible introduction to SDEs, their applications and the numerical methods to solve such equations. From the reviews: "The authors draw upon their own research and experiences in obviously many disciplines... considerable time has obviously been spent writing this in the simplest language possible." --ZAMP

An Introduction to Computational Stochastic PDEs

Download An Introduction to Computational Stochastic PDEs PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 0521899907
Total Pages : 516 pages
Book Rating : 4.5/5 (218 download)

DOWNLOAD NOW!


Book Synopsis An Introduction to Computational Stochastic PDEs by : Gabriel J. Lord

Download or read book An Introduction to Computational Stochastic PDEs written by Gabriel J. Lord and published by Cambridge University Press. This book was released on 2014-08-11 with total page 516 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book offers a practical presentation of stochastic partial differential equations arising in physical applications and their numerical approximation.

Numerical Approximations of Stochastic Differential Equations with Non-Globally Lipschitz Continuous Coefficients

Download Numerical Approximations of Stochastic Differential Equations with Non-Globally Lipschitz Continuous Coefficients PDF Online Free

Author :
Publisher : American Mathematical Soc.
ISBN 13 : 1470409844
Total Pages : 112 pages
Book Rating : 4.4/5 (74 download)

DOWNLOAD NOW!


Book Synopsis Numerical Approximations of Stochastic Differential Equations with Non-Globally Lipschitz Continuous Coefficients by : Martin Hutzenthaler

Download or read book Numerical Approximations of Stochastic Differential Equations with Non-Globally Lipschitz Continuous Coefficients written by Martin Hutzenthaler and published by American Mathematical Soc.. This book was released on 2015-06-26 with total page 112 pages. Available in PDF, EPUB and Kindle. Book excerpt: Many stochastic differential equations (SDEs) in the literature have a superlinearly growing nonlinearity in their drift or diffusion coefficient. Unfortunately, moments of the computationally efficient Euler-Maruyama approximation method diverge for these SDEs in finite time. This article develops a general theory based on rare events for studying integrability properties such as moment bounds for discrete-time stochastic processes. Using this approach, the authors establish moment bounds for fully and partially drift-implicit Euler methods and for a class of new explicit approximation methods which require only a few more arithmetical operations than the Euler-Maruyama method. These moment bounds are then used to prove strong convergence of the proposed schemes. Finally, the authors illustrate their results for several SDEs from finance, physics, biology and chemistry.

Strong and Weak Approximation of Semilinear Stochastic Evolution Equations

Download Strong and Weak Approximation of Semilinear Stochastic Evolution Equations PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3319022318
Total Pages : 188 pages
Book Rating : 4.3/5 (19 download)

DOWNLOAD NOW!


Book Synopsis Strong and Weak Approximation of Semilinear Stochastic Evolution Equations by : Raphael Kruse

Download or read book Strong and Weak Approximation of Semilinear Stochastic Evolution Equations written by Raphael Kruse and published by Springer. This book was released on 2013-11-18 with total page 188 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this book we analyze the error caused by numerical schemes for the approximation of semilinear stochastic evolution equations (SEEq) in a Hilbert space-valued setting. The numerical schemes considered combine Galerkin finite element methods with Euler-type temporal approximations. Starting from a precise analysis of the spatio-temporal regularity of the mild solution to the SEEq, we derive and prove optimal error estimates of the strong error of convergence in the first part of the book. The second part deals with a new approach to the so-called weak error of convergence, which measures the distance between the law of the numerical solution and the law of the exact solution. This approach is based on Bismut’s integration by parts formula and the Malliavin calculus for infinite dimensional stochastic processes. These techniques are developed and explained in a separate chapter, before the weak convergence is proven for linear SEEq.

Stochastic Partial Differential Equations

Download Stochastic Partial Differential Equations PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3319586475
Total Pages : 517 pages
Book Rating : 4.3/5 (195 download)

DOWNLOAD NOW!


Book Synopsis Stochastic Partial Differential Equations by : Sergey V. Lototsky

Download or read book Stochastic Partial Differential Equations written by Sergey V. Lototsky and published by Springer. This book was released on 2017-07-06 with total page 517 pages. Available in PDF, EPUB and Kindle. Book excerpt: Taking readers with a basic knowledge of probability and real analysis to the frontiers of a very active research discipline, this textbook provides all the necessary background from functional analysis and the theory of PDEs. It covers the main types of equations (elliptic, hyperbolic and parabolic) and discusses different types of random forcing. The objective is to give the reader the necessary tools to understand the proofs of existing theorems about SPDEs (from other sources) and perhaps even to formulate and prove a few new ones. Most of the material could be covered in about 40 hours of lectures, as long as not too much time is spent on the general discussion of stochastic analysis in infinite dimensions. As the subject of SPDEs is currently making the transition from the research level to that of a graduate or even undergraduate course, the book attempts to present enough exercise material to fill potential exams and homework assignments. Exercises appear throughout and are usually directly connected to the material discussed at a particular place in the text. The questions usually ask to verify something, so that the reader already knows the answer and, if pressed for time, can move on. Accordingly, no solutions are provided, but there are often hints on how to proceed. The book will be of interest to everybody working in the area of stochastic analysis, from beginning graduate students to experts in the field.

Numerical Approximations of Stochastic Maxwell Equations

Download Numerical Approximations of Stochastic Maxwell Equations PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 9819966868
Total Pages : 293 pages
Book Rating : 4.8/5 (199 download)

DOWNLOAD NOW!


Book Synopsis Numerical Approximations of Stochastic Maxwell Equations by : Chuchu Chen

Download or read book Numerical Approximations of Stochastic Maxwell Equations written by Chuchu Chen and published by Springer Nature. This book was released on 2024-01-04 with total page 293 pages. Available in PDF, EPUB and Kindle. Book excerpt: The stochastic Maxwell equations play an essential role in many fields, including fluctuational electrodynamics, statistical radiophysics, integrated circuits, and stochastic inverse problems. This book provides some recent advances in the investigation of numerical approximations of the stochastic Maxwell equations via structure-preserving algorithms. It presents an accessible overview of the construction and analysis of structure-preserving algorithms with an emphasis on the preservation of geometric structures, physical properties, and asymptotic behaviors of the stochastic Maxwell equations. A friendly introduction to the simulation of the stochastic Maxwell equations with some structure-preserving algorithms is provided using MATLAB for the reader’s convenience. The objects considered in this book are related to several fascinating mathematical fields: numerical analysis, stochastic analysis, (multi-)symplectic geometry, large deviations principle, ergodic theory, partial differential equation, probability theory, etc. This book will appeal to researchers who are interested in these topics.

Advanced Spatial Modeling with Stochastic Partial Differential Equations Using R and INLA

Download Advanced Spatial Modeling with Stochastic Partial Differential Equations Using R and INLA PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 0429629850
Total Pages : 284 pages
Book Rating : 4.4/5 (296 download)

DOWNLOAD NOW!


Book Synopsis Advanced Spatial Modeling with Stochastic Partial Differential Equations Using R and INLA by : Elias T. Krainski

Download or read book Advanced Spatial Modeling with Stochastic Partial Differential Equations Using R and INLA written by Elias T. Krainski and published by CRC Press. This book was released on 2018-12-07 with total page 284 pages. Available in PDF, EPUB and Kindle. Book excerpt: Modeling spatial and spatio-temporal continuous processes is an important and challenging problem in spatial statistics. Advanced Spatial Modeling with Stochastic Partial Differential Equations Using R and INLA describes in detail the stochastic partial differential equations (SPDE) approach for modeling continuous spatial processes with a Matérn covariance, which has been implemented using the integrated nested Laplace approximation (INLA) in the R-INLA package. Key concepts about modeling spatial processes and the SPDE approach are explained with examples using simulated data and real applications. This book has been authored by leading experts in spatial statistics, including the main developers of the INLA and SPDE methodologies and the R-INLA package. It also includes a wide range of applications: * Spatial and spatio-temporal models for continuous outcomes * Analysis of spatial and spatio-temporal point patterns * Coregionalization spatial and spatio-temporal models * Measurement error spatial models * Modeling preferential sampling * Spatial and spatio-temporal models with physical barriers * Survival analysis with spatial effects * Dynamic space-time regression * Spatial and spatio-temporal models for extremes * Hurdle models with spatial effects * Penalized Complexity priors for spatial models All the examples in the book are fully reproducible. Further information about this book, as well as the R code and datasets used, is available from the book website at http://www.r-inla.org/spde-book. The tools described in this book will be useful to researchers in many fields such as biostatistics, spatial statistics, environmental sciences, epidemiology, ecology and others. Graduate and Ph.D. students will also find this book and associated files a valuable resource to learn INLA and the SPDE approach for spatial modeling.

A Minicourse on Stochastic Partial Differential Equations

Download A Minicourse on Stochastic Partial Differential Equations PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 3540859934
Total Pages : 230 pages
Book Rating : 4.5/5 (48 download)

DOWNLOAD NOW!


Book Synopsis A Minicourse on Stochastic Partial Differential Equations by : Robert C. Dalang

Download or read book A Minicourse on Stochastic Partial Differential Equations written by Robert C. Dalang and published by Springer Science & Business Media. This book was released on 2009 with total page 230 pages. Available in PDF, EPUB and Kindle. Book excerpt: This title contains lectures that offer an introduction to modern topics in stochastic partial differential equations and bring together experts whose research is centered on the interface between Gaussian analysis, stochastic analysis, and stochastic PDEs.

A Dynamical Perspective on the ɸ4 Model

Download A Dynamical Perspective on the ɸ4 Model PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3030118398
Total Pages : 328 pages
Book Rating : 4.0/5 (31 download)

DOWNLOAD NOW!


Book Synopsis A Dynamical Perspective on the ɸ4 Model by : Panayotis G. Kevrekidis

Download or read book A Dynamical Perspective on the ɸ4 Model written by Panayotis G. Kevrekidis and published by Springer. This book was released on 2019-02-26 with total page 328 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents a careful selection of the most important developments of the \phi^4 model, offering a judicious summary of this model with a view to future prospects and the challenges ahead. Over the past four decades, the \phi^4 model has been the basis for a broad array of developments in the physics and mathematics of nonlinear waves. From kinks to breathers, from continuum media to discrete lattices, from collisions of solitary waves to spectral properties, and from deterministic to stochastic models of \phi^4 (and \phi^6, \phi^8, \phi^12 variants more recently), this dynamical model has served as an excellent test bed for formulating and testing the ideas of nonlinear science and solitary waves.

Numerical Methods for Stochastic Partial Differential Equations with White Noise

Download Numerical Methods for Stochastic Partial Differential Equations with White Noise PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3319575112
Total Pages : 391 pages
Book Rating : 4.3/5 (195 download)

DOWNLOAD NOW!


Book Synopsis Numerical Methods for Stochastic Partial Differential Equations with White Noise by : Zhongqiang Zhang

Download or read book Numerical Methods for Stochastic Partial Differential Equations with White Noise written by Zhongqiang Zhang and published by Springer. This book was released on 2017-09-01 with total page 391 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book covers numerical methods for stochastic partial differential equations with white noise using the framework of Wong-Zakai approximation. The book begins with some motivational and background material in the introductory chapters and is divided into three parts. Part I covers numerical stochastic ordinary differential equations. Here the authors start with numerical methods for SDEs with delay using the Wong-Zakai approximation and finite difference in time. Part II covers temporal white noise. Here the authors consider SPDEs as PDEs driven by white noise, where discretization of white noise (Brownian motion) leads to PDEs with smooth noise, which can then be treated by numerical methods for PDEs. In this part, recursive algorithms based on Wiener chaos expansion and stochastic collocation methods are presented for linear stochastic advection-diffusion-reaction equations. In addition, stochastic Euler equations are exploited as an application of stochastic collocation methods, where a numerical comparison with other integration methods in random space is made. Part III covers spatial white noise. Here the authors discuss numerical methods for nonlinear elliptic equations as well as other equations with additive noise. Numerical methods for SPDEs with multiplicative noise are also discussed using the Wiener chaos expansion method. In addition, some SPDEs driven by non-Gaussian white noise are discussed and some model reduction methods (based on Wick-Malliavin calculus) are presented for generalized polynomial chaos expansion methods. Powerful techniques are provided for solving stochastic partial differential equations. This book can be considered as self-contained. Necessary background knowledge is presented in the appendices. Basic knowledge of probability theory and stochastic calculus is presented in Appendix A. In Appendix B some semi-analytical methods for SPDEs are presented. In Appendix C an introduction to Gauss quadrature is provided. In Appendix D, all the conclusions which are needed for proofs are presented, and in Appendix E a method to compute the convergence rate empirically is included. In addition, the authors provide a thorough review of the topics, both theoretical and computational exercises in the book with practical discussion of the effectiveness of the methods. Supporting Matlab files are made available to help illustrate some of the concepts further. Bibliographic notes are included at the end of each chapter. This book serves as a reference for graduate students and researchers in the mathematical sciences who would like to understand state-of-the-art numerical methods for stochastic partial differential equations with white noise.

Fast Direct Solvers for Elliptic PDEs

Download Fast Direct Solvers for Elliptic PDEs PDF Online Free

Author :
Publisher : SIAM
ISBN 13 : 1611976049
Total Pages : 332 pages
Book Rating : 4.6/5 (119 download)

DOWNLOAD NOW!


Book Synopsis Fast Direct Solvers for Elliptic PDEs by : Per-Gunnar Martinsson

Download or read book Fast Direct Solvers for Elliptic PDEs written by Per-Gunnar Martinsson and published by SIAM. This book was released on 2019-12-16 with total page 332 pages. Available in PDF, EPUB and Kindle. Book excerpt: Fast solvers for elliptic PDEs form a pillar of scientific computing. They enable detailed and accurate simulations of electromagnetic fields, fluid flows, biochemical processes, and much more. This textbook provides an introduction to fast solvers from the point of view of integral equation formulations, which lead to unparalleled accuracy and speed in many applications. The focus is on fast algorithms for handling dense matrices that arise in the discretization of integral operators, such as the fast multipole method and fast direct solvers. While the emphasis is on techniques for dense matrices, the text also describes how similar techniques give rise to linear complexity algorithms for computing the inverse or the LU factorization of a sparse matrix resulting from the direct discretization of an elliptic PDE. This is the first textbook to detail the active field of fast direct solvers, introducing readers to modern linear algebraic techniques for accelerating computations, such as randomized algorithms, interpolative decompositions, and data-sparse hierarchical matrix representations. Written with an emphasis on mathematical intuition rather than theoretical details, it is richly illustrated and provides pseudocode for all key techniques. Fast Direct Solvers for Elliptic PDEs is appropriate for graduate students in applied mathematics and scientific computing, engineers and scientists looking for an accessible introduction to integral equation methods and fast solvers, and researchers in computational mathematics who want to quickly catch up on recent advances in randomized algorithms and techniques for working with data-sparse matrices.

A Proof that Artificial Neural Networks Overcome the Curse of Dimensionality in the Numerical Approximation of Black–Scholes Partial Differential Equations

Download A Proof that Artificial Neural Networks Overcome the Curse of Dimensionality in the Numerical Approximation of Black–Scholes Partial Differential Equations PDF Online Free

Author :
Publisher : American Mathematical Society
ISBN 13 : 147045632X
Total Pages : 106 pages
Book Rating : 4.4/5 (74 download)

DOWNLOAD NOW!


Book Synopsis A Proof that Artificial Neural Networks Overcome the Curse of Dimensionality in the Numerical Approximation of Black–Scholes Partial Differential Equations by : Philipp Grohs

Download or read book A Proof that Artificial Neural Networks Overcome the Curse of Dimensionality in the Numerical Approximation of Black–Scholes Partial Differential Equations written by Philipp Grohs and published by American Mathematical Society. This book was released on 2023-04-07 with total page 106 pages. Available in PDF, EPUB and Kindle. Book excerpt: View the abstract.

Mathematics Motivated by the Social and Behavioral Sciences

Download Mathematics Motivated by the Social and Behavioral Sciences PDF Online Free

Author :
Publisher : SIAM
ISBN 13 : 1611975182
Total Pages : 182 pages
Book Rating : 4.6/5 (119 download)

DOWNLOAD NOW!


Book Synopsis Mathematics Motivated by the Social and Behavioral Sciences by : Donald G. Saari

Download or read book Mathematics Motivated by the Social and Behavioral Sciences written by Donald G. Saari and published by SIAM. This book was released on 2018-02-06 with total page 182 pages. Available in PDF, EPUB and Kindle. Book excerpt: The mathematical challenges coming from the social and behavioral sciences differ significantly from typical applied mathematical concerns. ?Change,? for instance, is ubiquitous, but without knowing the fundamental driving force, standard differential and iterative methods are not appropriate. Although differing forms of aggregation are widely used, a general mathematical assessment of potential pitfalls is missing. These realities provide opportunities to create new mathematical approaches. These themes are described in an introductory, expository, and accessible manner by exploring new ways to handle dynamics and evolutionary game theory, to identify subtleties of decision and voting methods, to recognize unexpected modeling concerns, and to introduce new approaches with which to examine game theory. Applications range from avoiding undesired consequences when designing policy to identifying unanticipated voting (where the ?wrong? person could win), nonparametric statistical, and economic ?supply and demand? properties.

A Primer on Radial Basis Functions with Applications to the Geosciences

Download A Primer on Radial Basis Functions with Applications to the Geosciences PDF Online Free

Author :
Publisher : SIAM
ISBN 13 : 161197402X
Total Pages : 226 pages
Book Rating : 4.6/5 (119 download)

DOWNLOAD NOW!


Book Synopsis A Primer on Radial Basis Functions with Applications to the Geosciences by : Bengt Fornberg

Download or read book A Primer on Radial Basis Functions with Applications to the Geosciences written by Bengt Fornberg and published by SIAM. This book was released on 2015-09-30 with total page 226 pages. Available in PDF, EPUB and Kindle. Book excerpt: ?Adapted from a series of lectures given by the authors, this monograph focuses on radial basis functions (RBFs), a powerful numerical methodology for solving PDEs to high accuracy in any number of dimensions. This method applies to problems across a wide range of PDEs arising in fluid mechanics, wave motions, astro- and geosciences, mathematical biology, and other areas and has lately been shown to compete successfully against the very best previous approaches on some large benchmark problems. Using examples and heuristic explanations to create a practical and intuitive perspective, the authors address how, when, and why RBF-based methods work.? The authors trace the algorithmic evolution of RBFs, starting with brief introductions to finite difference (FD) and pseudospectral (PS) methods and following a logical progression to global RBFs and then to RBF-generated FD (RBF-FD) methods. The RBF-FD method, conceived in 2000, has proven to be a leading candidate for numerical simulations in an increasingly wide range of applications, including seismic exploration for oil and gas, weather and climate modeling, and electromagnetics, among others.? This is the first survey in book format of the RBF-FD methodology and is suitable as the text for a one-semester first-year graduate class.