Supply Chain Sustainability Analysis of Renewable Hydrocarbon Fuels via Indirect Liquefaction, Hydrothermal Liquefaction, Combined Algal Processing, and Biochemical Conversion: Update of the 2021 State-of-Technology Cases

Download Supply Chain Sustainability Analysis of Renewable Hydrocarbon Fuels via Indirect Liquefaction, Hydrothermal Liquefaction, Combined Algal Processing, and Biochemical Conversion: Update of the 2021 State-of-Technology Cases PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 0 pages
Book Rating : 4.:/5 (14 download)

DOWNLOAD NOW!


Book Synopsis Supply Chain Sustainability Analysis of Renewable Hydrocarbon Fuels via Indirect Liquefaction, Hydrothermal Liquefaction, Combined Algal Processing, and Biochemical Conversion: Update of the 2021 State-of-Technology Cases by :

Download or read book Supply Chain Sustainability Analysis of Renewable Hydrocarbon Fuels via Indirect Liquefaction, Hydrothermal Liquefaction, Combined Algal Processing, and Biochemical Conversion: Update of the 2021 State-of-Technology Cases written by and published by . This book was released on 2022 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Department of Energy's (DOE's) Bioenergy Technologies Office (BETO) aims to develop and deploy technologies to transform renewable biomass resources into commercially viable, high-performance biofuels, bioproducts, and biopower through public and private partnerships (U.S. Department of Energy, 2016). BETO and its national laboratory teams conduct in-depth techno-economic assessments (TEA) of biomass feedstock supply and logistics and conversion technologies to produce biofuels. There are two general types of TEAs: A design case is a TEA that outlines a target case (future projection) for a particular biofuel pathway. It enables identification of data gaps and research and development needs, and provides goals and benchmarks against which technology progress is assessed. A state of technology (SOT) analysis assesses progress within and across relevant technology areas based on actual results at current experimental scales, relative to technical targets and cost goals from design cases, and includes technical, economic, and environmental criteria as available. In addition to developing a TEA for a pathway of interest, BETO also performs a supply chain sustainability analysis (SCSA). The SCSA takes the life-cycle analysis approach that BETO has been supporting for about 20 years. It enables BETO to identify energy consumption, environmental, and sustainability issues that may be associated with biofuel production. Approaches to mitigate these issues can then be developed. Additionally, the SCSA allows for comparison of energy and environmental impacts across biofuel pathways in BETO's research and development portfolio.

Supply Chain Sustainability Analysis of Renewable Hydrocarbon Fuels via Indirect Liquefaction, Ex Situ Catalytic Fast Pyrolysis, Hydrothermal Liquefaction, Combined Algal Processing, and Biochemical Conversion: Update of the 2018 State-of-Technology Cases and Design Cases

Download Supply Chain Sustainability Analysis of Renewable Hydrocarbon Fuels via Indirect Liquefaction, Ex Situ Catalytic Fast Pyrolysis, Hydrothermal Liquefaction, Combined Algal Processing, and Biochemical Conversion: Update of the 2018 State-of-Technology Cases and Design Cases PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 0 pages
Book Rating : 4.:/5 (14 download)

DOWNLOAD NOW!


Book Synopsis Supply Chain Sustainability Analysis of Renewable Hydrocarbon Fuels via Indirect Liquefaction, Ex Situ Catalytic Fast Pyrolysis, Hydrothermal Liquefaction, Combined Algal Processing, and Biochemical Conversion: Update of the 2018 State-of-Technology Cases and Design Cases by :

Download or read book Supply Chain Sustainability Analysis of Renewable Hydrocarbon Fuels via Indirect Liquefaction, Ex Situ Catalytic Fast Pyrolysis, Hydrothermal Liquefaction, Combined Algal Processing, and Biochemical Conversion: Update of the 2018 State-of-Technology Cases and Design Cases written by and published by . This book was released on 2018 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: This technical report describes the SCSAs for the production of renewable hydrocarbon transportation fuels via a range of conversion technologies: (1) renewable high octane gasoline (HOG) via indirect liquefaction (IDL) of woody lignocellulosic biomass (note that the IDL pathway in this SCSA represents the syngas conversion design in the 2018 SOT and 2022 design cases [Tan et al., 2018]); (2) renewable gasoline (RG) and diesel (RD) blendstocks via ex situ catalytic fast pyrolysis of woody lignocellulosic biomass; (3) RD via hydrothermal liquefaction (HTL) of wet sludge from a wastewater treatment plant; (4) renewable hydrocarbon fuels via biochemical conversion of herbaceous lignocellulosic biomass; (5) renewable diesel via HTL of a blend of algae and woody biomass; and (6) renewable diesel via combined algae processing (CAP). This technical report focuses on the environmental performance of these six biofuel production pathways in their 2018 SOT cases, as well as in their design cases (future target projections). The results of these renewable hydrocarbon fuel pathways in these SCSA analyses update those for the respective 2015 and 2016 SOT cases (Edward Frank et al. 2016; Hao Cai et al. 2016, 2017; Cai et al. 2018) in the case of IDL, algae CAP, and biochemical conversion pathways. They also provide an opportunity to examine the impact of technology improvements in both biomass feedstock production and biofuel production that have been achieved in 2018 SOTs on the sustainability performance of these renewable transportation fuels, and they reflect updates to Argonne National Laboratory's Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET[R]) model, which was released in October 2018 (Wang et al. 2018). These GREET updates include production of natural gas, electricity, and petroleum-based fuels that can influence biofuels' supply chain greenhouse gas (GHG) (CO2, CH4, and N2O) emissions, water consumption and air pollutant emissions. GHG emissions, water consumption, and 2 nitrogen oxides (NOx) emissions are the main sustainability metrics assessed in this analysis. In this analysis, we define water consumption as the amount of water withdrawn from a freshwater source that is not returned (or returnable) to a freshwater source at the same level of quality. Life-cycle fossil energy consumption and net energy balance, which is the life-cycle fossil energy consumption deducted from the renewable biofuel energy produced, are also assessed.

Supply Chain Sustainability Analysis of Renewable Hydrocarbon Fuels via Indirect Liquefaction, Ex Situ Catalytic Fast Pyrolysis, Hydrothermal Liquefaction, Combined Algal Processing, and Biochemical Conversion: Update of the 2020 State-of-Technology Cases

Download Supply Chain Sustainability Analysis of Renewable Hydrocarbon Fuels via Indirect Liquefaction, Ex Situ Catalytic Fast Pyrolysis, Hydrothermal Liquefaction, Combined Algal Processing, and Biochemical Conversion: Update of the 2020 State-of-Technology Cases PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 0 pages
Book Rating : 4.:/5 (14 download)

DOWNLOAD NOW!


Book Synopsis Supply Chain Sustainability Analysis of Renewable Hydrocarbon Fuels via Indirect Liquefaction, Ex Situ Catalytic Fast Pyrolysis, Hydrothermal Liquefaction, Combined Algal Processing, and Biochemical Conversion: Update of the 2020 State-of-Technology Cases by :

Download or read book Supply Chain Sustainability Analysis of Renewable Hydrocarbon Fuels via Indirect Liquefaction, Ex Situ Catalytic Fast Pyrolysis, Hydrothermal Liquefaction, Combined Algal Processing, and Biochemical Conversion: Update of the 2020 State-of-Technology Cases written by and published by . This book was released on 2021 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Department of Energy's (DOE's) Bioenergy Technologies Office (BETO) aims to develop and deploy technologies to transform renewable biomass resources into commercially viable, high-performance biofuels, bioproducts, and biopower through public and private partnerships (U.S. Department of Energy, 2016). BETO and its national laboratory teams conduct in-depth techno-economic assessments (TEA) of biomass feedstock supply and logistics and conversion technologies to produce biofuels. There are two general types of TEAs: A design case is a TEA that outlines a target case (future projection) for a particular biofuel pathway. It enables identification of data gaps and research and development needs, and provides goals and benchmarks against which technology progress is assessed. A state of technology (SOT) analysis assesses progress within and across relevant technology areas based on actual results at current experimental scales, relative to technical targets and cost goals from design cases, and includes technical, economic, and environmental criteria as available. In addition to developing a TEA for a pathway of interest, BETO also performs a supply chain sustainability analysis (SCSA). The SCSA takes the life-cycle analysis approach that BETO has been supporting for about 20 years. It enables BETO to identify energy consumption, environmental, and sustainability issues that may be associated with biofuel production. Approaches to mitigate these issues can then be developed. Additionally, the SCSA allows for comparison of energy and environmental impacts across biofuel pathways in BETO's research and development portfolio.

Supply Chain Sustainability Analysis of Renewable Hydrocarbon Fuels via Hydrothermal Liquefaction, Combined Algal Processing, and Biochemical Conversion: Update of the 2022 State-of-Technology Cases

Download Supply Chain Sustainability Analysis of Renewable Hydrocarbon Fuels via Hydrothermal Liquefaction, Combined Algal Processing, and Biochemical Conversion: Update of the 2022 State-of-Technology Cases PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 0 pages
Book Rating : 4.:/5 (14 download)

DOWNLOAD NOW!


Book Synopsis Supply Chain Sustainability Analysis of Renewable Hydrocarbon Fuels via Hydrothermal Liquefaction, Combined Algal Processing, and Biochemical Conversion: Update of the 2022 State-of-Technology Cases by :

Download or read book Supply Chain Sustainability Analysis of Renewable Hydrocarbon Fuels via Hydrothermal Liquefaction, Combined Algal Processing, and Biochemical Conversion: Update of the 2022 State-of-Technology Cases written by and published by . This book was released on 2023 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Department of Energy's (DOE) Bioenergy Technologies Office (BETO) aims to develop and deploy technologies to transform renewable biomass resources into commercially viable, high-performance biofuels, bioproducts, and biopower through public and private partnerships. BETO and its national laboratory teams conduct in-depth techno-economic assessments (TEA) of biomass feedstock supply and logistics and conversion technologies to produce biofuels. There are two general types of TEAs: A design case outlines a target case (future projection) for a particular biofuel pathway. It informs R&D priorities by identifying areas in need of improvement, tracks sustainability impact of R&D, and provides goals and benchmarks against which technology progress is assessed. A state of technology (SOT) analysis assesses progress within and across relevant technology areas based on actual results at current experimental scales relative to technical targets and cost goals from design cases, and includes technical, economic, and environmental criteria as available. In addition to developing a TEA for a pathway of interest, BETO also performs a supply chain sustainability analysis (SCSA). The SCSA takes the life-cycle analysis approach that BETO has been supporting for over 20 years. It enables BETO to identify energy consumption, environmental, and sustainability issues that may be associated with biofuel production. Approaches to mitigating these issues can then be developed. Additionally, the SCSA allows for comparison of energy and environmental impacts across biofuel pathways in BETO's research and development portfolio. This technical report describes the SCSAs for the production of renewable hydrocarbon transportation fuels via a range of conversion technologies in the 2022 SOTs: (1) renewable hydrocarbon fuels via hydrothermal liquefaction (HTL) of wet sludge from a wastewater treatment plant; (2) renewable hydrocarbon fuels via biochemical conversion of herbaceous lignocellulosic biomass; (3) renewable hydrocarbon fuels via HTL of an algae/woody biomass blend; and (4) renewable hydrocarbon fuels via combined algae processing (CAP).

Supply Chain Sustainability Analysis of Renewable Hydrocarbon Fuels Via Indirect Liquefaction, Fast Pyrolysis, and Hydrothermal Liquefaction

Download Supply Chain Sustainability Analysis of Renewable Hydrocarbon Fuels Via Indirect Liquefaction, Fast Pyrolysis, and Hydrothermal Liquefaction PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 36 pages
Book Rating : 4.:/5 (982 download)

DOWNLOAD NOW!


Book Synopsis Supply Chain Sustainability Analysis of Renewable Hydrocarbon Fuels Via Indirect Liquefaction, Fast Pyrolysis, and Hydrothermal Liquefaction by :

Download or read book Supply Chain Sustainability Analysis of Renewable Hydrocarbon Fuels Via Indirect Liquefaction, Fast Pyrolysis, and Hydrothermal Liquefaction written by and published by . This book was released on 2017 with total page 36 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Department of Energy's (DOE) Bioenergy Technologies Office (BETO) aims to develop and deploy technologies to transform renewable biomass resources into commercially viable, high-performance biofuels, bioproducts and biopower through public and private partnerships (DOE, 2016). BETO and its national laboratory teams conduct in-depth technoeconomic assessments (TEA) of biomass feedstock supply and logistics and conversion technologies to produce biofuels, and life-cycle analysis of overall system sustainability.

Supply Chain Sustainability Analysis of Whole Algae Hydrothermal Liquefaction and Upgrading

Download Supply Chain Sustainability Analysis of Whole Algae Hydrothermal Liquefaction and Upgrading PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 0 pages
Book Rating : 4.:/5 (14 download)

DOWNLOAD NOW!


Book Synopsis Supply Chain Sustainability Analysis of Whole Algae Hydrothermal Liquefaction and Upgrading by :

Download or read book Supply Chain Sustainability Analysis of Whole Algae Hydrothermal Liquefaction and Upgrading written by and published by . This book was released on 2015 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Department of Energy's Bioenergy Technology Office (BETO) collaborates with a wide range of institutions towards the development and deployment of biofuels and bioproducts. To facilitate this effort, BETO and its partner national laboratories develop detailed techno-economic assessments (TEA) of biofuel production technologies as part of the development of design cases and state of technology (SOT) analyses. A design case is a TEA that outlines a target case for a particular biofuel pathway. It enables preliminary identification of data gaps and research and development needs and provides goals and targets against which technology progress is assessed. On the other hand, an SOT analysis assesses progress within and across relevant technology areas based on actual experimental results relative to technical targets and cost goals from design cases and includes technical, economic, and environmental criteria as available. (SOT) analyses. A design case is a TEA that outlines a target case for a particular biofuel pathway. It enables preliminary identification of data gaps and research and development needs and provides goals and targets against which technology progress is assessed. On the other hand, an SOT analysis assesses progress within and across relevant technology areas based on actual experimental results relative to technical targets and cost goals from design cases and includes technical, economic, and environmental criteria as available. (SOT) analyses. A design case is a TEA that outlines a target case for a particular biofuel pathway. It enables preliminary identification of data gaps and research and development needs and provides goals and targets against which technology progress is assessed. On the other hand, an SOT analysis assesses progress within and across relevant technology areas based on actual experimental results relative to technical targets and cost goals from design cases and includes technical, economic, and environmental criteria as available.

Supply Chain Sustainability Analysis of Indirect Liquefaction of Blended Biomass to Produce High Octane Gasoline

Download Supply Chain Sustainability Analysis of Indirect Liquefaction of Blended Biomass to Produce High Octane Gasoline PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 23 pages
Book Rating : 4.:/5 (93 download)

DOWNLOAD NOW!


Book Synopsis Supply Chain Sustainability Analysis of Indirect Liquefaction of Blended Biomass to Produce High Octane Gasoline by :

Download or read book Supply Chain Sustainability Analysis of Indirect Liquefaction of Blended Biomass to Produce High Octane Gasoline written by and published by . This book was released on 2015 with total page 23 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Department of Energy's (DOE) Bioenergy Technologies Office (BETO) aims at developing and deploying technologies to transform renewable biomass resources into commercially viable, high-performance biofuels, bioproducts and biopower through public and private partnerships (DOE, 2015). BETO also performs a supply chain sustainability analysis (SCSA). This report describes the SCSA of the production of renewable high octane gasoline (HOG) via indirect liquefaction (IDL) of lignocellulosic biomass. This SCSA was developed for the 2017 design case for feedstock logistics (INL, 2014) and for the 2022 target case for HOG production via IDL (Tan et al., 2015). The design includes advancements that are likely and targeted to be achieved by 2017 for the feedstock logistics and 2022 for the IDL conversion process. The 2017 design case for feedstock logistics demonstrated a delivered feedstock cost of $80 per dry U.S. short ton by the year 2017 (INL, 2014). The 2022 design case for the conversion process, as modeled in Tan et al. (2015), uses the feedstock 2017 design case blend of biomass feedstocks consisting of pulpwood, wood residue, switchgrass, and construction and demolition waste (C & D) with performance properties consistent with a sole woody feedstock type (e.g., pine or poplar). The HOG SCSA case considers the 2017 feedstock design case (the blend) as well as individual feedstock cases separately as alternative scenarios when the feedstock blend ratio varies as a result of a change in feedstock availability. These scenarios could be viewed as bounding SCSA results because of distinctive requirements for energy and chemical inputs for the production and logistics of different components of the blend feedstocks.

Supply Chain Sustainability Analysis of Indirect Liquefaction of Blended Biomass to Produce High Octane Gasoline (Citation Only).

Download Supply Chain Sustainability Analysis of Indirect Liquefaction of Blended Biomass to Produce High Octane Gasoline (Citation Only). PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 0 pages
Book Rating : 4.:/5 (14 download)

DOWNLOAD NOW!


Book Synopsis Supply Chain Sustainability Analysis of Indirect Liquefaction of Blended Biomass to Produce High Octane Gasoline (Citation Only). by :

Download or read book Supply Chain Sustainability Analysis of Indirect Liquefaction of Blended Biomass to Produce High Octane Gasoline (Citation Only). written by and published by . This book was released on 2015 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: This report describes the supply chain sustainability analysis of the production of renewable high octane gasoline (HOG) via indirect liquefaction (IDL) of lignocellulosic biomass. This SCSA was developed for the 2017 design case for feedstock logistics (INL, 2014) and for the 2022 target case for HOG production via IDL (Tan et al., 2015). The design includes advancements that are likely and targeted to be achieved by 2017 for the feedstock logistics and 2022 for the IDL conversion process. The 2017 design case for feedstock logistics demonstrated a delivered feedstock cost of $80 per dry U.S. short ton by the year 2017 (INL, 2014). The 2022 design case for the conversion process, as modeled in Tan et al. (2015), uses the feedstock 2017 design case blend of biomass feedstocks consisting of pulpwood, wood residue, switchgrass, and construction and demolition waste (C&D) with performance properties consistent with a sole woody feedstock type (e.g., pine or poplar). The HOG SCSA case considers the 2017 feedstock design case (the blend) as well as individual feedstock cases separately as alternative scenarios when the feedstock blend ratio varies as a result of a change in feedstock availability. These scenarios could be viewed as bounding SCSA results because of distinctive requirements for energy and chemical inputs for the production and logistics of different components of the blend feedstocks.

Life Cycle Assessment

Download Life Cycle Assessment PDF Online Free

Author :
Publisher : Royal Society of Chemistry
ISBN 13 : 1839161361
Total Pages : 316 pages
Book Rating : 4.8/5 (391 download)

DOWNLOAD NOW!


Book Synopsis Life Cycle Assessment by : Aiduan Borrion

Download or read book Life Cycle Assessment written by Aiduan Borrion and published by Royal Society of Chemistry. This book was released on 2021-03-19 with total page 316 pages. Available in PDF, EPUB and Kindle. Book excerpt: Life cycle assessment (LCA) is an established methodology used to quantify the environmental impacts of products, processes and services. Circular economy (CE) thinking is conceptual way of considering the impacts of consuming resources. By taking a closed loop approach, CE provides a framework for influencing behaviours and practices to minimise this impact. Development of the circular economy is a crucial component in the progression towards future sustainability. This book provides a robust systematic approach to the circular economy concept, using the established methodology of LCA. Including chapters on circular economic thinking, the use of LCA as a metric and linking LCA to the wider circular economy, this book utilises case studies to illustrate the approaches to LCA. With contributions from researchers worldwide, Life Cycle Assessment provides a practical, global guide for those who wish to use LCA as a research tool or to inform policy, process, and product improvement.

Biokerosene

Download Biokerosene PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3662530651
Total Pages : 761 pages
Book Rating : 4.6/5 (625 download)

DOWNLOAD NOW!


Book Synopsis Biokerosene by : Martin Kaltschmitt

Download or read book Biokerosene written by Martin Kaltschmitt and published by Springer. This book was released on 2017-08-09 with total page 761 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a detailed overview of aspects related to the overall provision chain for biokerosene as part of the global civil aviation business. Starting with a review of the current market situation for aviation fuels and airplanes and their demands, it then presents in-depth descriptions of classical and especially new types of non-edible biomass feedstock suitable for biokerosene provision. Subsequent chapters discuss those fuel provision processes that are already available and those still under development based on various biomass feedstock materials, and present e.g. an overview of the current state of the art in the production of a liquid biomass-based fuel fulfilling the specifications for kerosene. Further, given the growing interest of the aviation industry and airlines in biofuels for aviation, the experiences of an air-carrier are presented. In closing, the book provides a market outlook for biokerosene. Addressing a broad range of aspects related to the pros and cons of biokerosene as a renewable fuel for aviation, the book offers a unique resource.

Process Intensification and Integration for Sustainable Design

Download Process Intensification and Integration for Sustainable Design PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 3527818723
Total Pages : 344 pages
Book Rating : 4.5/5 (278 download)

DOWNLOAD NOW!


Book Synopsis Process Intensification and Integration for Sustainable Design by : Dominic C. Y. Foo

Download or read book Process Intensification and Integration for Sustainable Design written by Dominic C. Y. Foo and published by John Wiley & Sons. This book was released on 2020-12-01 with total page 344 pages. Available in PDF, EPUB and Kindle. Book excerpt: Presents comprehensive coverage of process intensification and integration for sustainable design, along with fundamental techniques and experiences from the industry Drawing from fundamental techniques and recent industrial experiences, this book discusses the many developments in process intensification and integration and focuses on increasing sustainability via several overarching topics such as Sustainable Manufacturing, Energy Saving Technologies, and Resource Conservation and Pollution Prevention Techniques. Process Intensification and Integration for Sustainable Design starts discussions on: shale gas as an option for the production of chemicals and challenges for process intensification; the design and techno-economic analysis of separation units to handle feedstock variability in shale gas treatment; RO-PRO desalination; and techno-economic and environmental assessment of ultrathin polysulfone membranes for oxygen-enriched combustion. Next, it looks at process intensification of membrane-based systems for water, energy, and environment applications; the design of internally heat-integrated distillation column (HIDiC); and graphical analysis and integration of heat exchanger networks with heat pumps. Decomposition and implementation of large-scale interplant heat integration is covered, as is the synthesis of combined heat and mass exchange networks (CHAMENs) with renewables. The book also covers optimization strategies for integrating and intensifying housing complexes; a sustainable biomass conversion process assessment; and more. Covers the many advances and changes in process intensification and integration Provides side-by-side discussions of fundamental techniques and recent industrial experiences to guide practitioners in their own processes Presents comprehensive coverage of topics relevant, among others, to the process industry, biorefineries, and plant energy management Offers insightful analysis and integration of reactor and heat exchanger network Looks at optimization of integrated water and multi-regenerator membrane systems involving multi-contaminants Process Intensification and Integration for Sustainable Design is an ideal book for process engineers, chemical engineers, engineering scientists, engineering consultants, and chemists.

Process Design and Economics for the Conversion of Lignocellulosic Biomass to Hydrocarbons Via Indirect Liquefaction. Thermochemical Research Pathway to High-Octane Gasoline Blendstock Through Methanol/Dimethyl Ether Intermediates

Download Process Design and Economics for the Conversion of Lignocellulosic Biomass to Hydrocarbons Via Indirect Liquefaction. Thermochemical Research Pathway to High-Octane Gasoline Blendstock Through Methanol/Dimethyl Ether Intermediates PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 189 pages
Book Rating : 4.:/5 (925 download)

DOWNLOAD NOW!


Book Synopsis Process Design and Economics for the Conversion of Lignocellulosic Biomass to Hydrocarbons Via Indirect Liquefaction. Thermochemical Research Pathway to High-Octane Gasoline Blendstock Through Methanol/Dimethyl Ether Intermediates by :

Download or read book Process Design and Economics for the Conversion of Lignocellulosic Biomass to Hydrocarbons Via Indirect Liquefaction. Thermochemical Research Pathway to High-Octane Gasoline Blendstock Through Methanol/Dimethyl Ether Intermediates written by and published by . This book was released on 2015 with total page 189 pages. Available in PDF, EPUB and Kindle. Book excerpt: This report was developed as part of the U.S. Department of Energy's Bioenergy Technologies Office's (BETO's) efforts to enable the development of technologies for the production of infrastructure-compatible, cost-competitive liquid hydrocarbon fuels from lignocellulosic biomass feedstocks. The research funded by BETO is designed to advance the state of technology of biomass feedstock supply and logistics, conversion, and overall system sustainability. It is expected that these research improvements will be made within the 2022 timeframe. As part of their involvement in this research and development effort, the National Renewable Energy Laboratory and the Pacific Northwest National Laboratory investigate the economics of conversion pathways through the development of conceptual biorefinery process models and techno-economic analysis models. This report describes in detail one potential conversion process for the production of high-octane gasoline blendstock via indirect liquefaction of biomass. The processing steps of this pathway include the conversion of biomass to synthesis gas or syngas via indirect gasification, gas cleanup, catalytic conversion of syngas to methanol intermediate, methanol dehydration to dimethyl ether (DME), and catalytic conversion of DME to high-octane, gasoline-range hydrocarbon blendstock product. The conversion process configuration leverages technologies previously advanced by research funded by BETO and demonstrated in 2012 with the production of mixed alcohols from biomass. Biomass-derived syngas cleanup via reforming of tars and other hydrocarbons is one of the key technology advancements realized as part of this prior research and 2012 demonstrations. The process described in this report evaluates a new technology area for the downstream utilization of clean biomass-derived syngas for the production of high-octane hydrocarbon products through methanol and DME intermediates. In this process, methanol undergoes dehydration to DME, which is subsequently converted via homologation reactions to high-octane, gasoline-range hydrocarbon products.

Processing Algal Biomass to Renewable Fuel

Download Processing Algal Biomass to Renewable Fuel PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 137 pages
Book Rating : 4.:/5 (826 download)

DOWNLOAD NOW!


Book Synopsis Processing Algal Biomass to Renewable Fuel by : Sally Louis Homsy

Download or read book Processing Algal Biomass to Renewable Fuel written by Sally Louis Homsy and published by . This book was released on 2012 with total page 137 pages. Available in PDF, EPUB and Kindle. Book excerpt: Since the industrial revolution the world's reliance on fossil fuels has been increasing at an accelerated rate. The negative environmental effects of burning fossil fuels and the demand for energy security have increased interest in renewable fuels technology. Using biomass as a feedstock for energy generation has emerged as an area of interest, and the focus of this study is on the sustainable production of a crude oil from the algal species Chlorella vulgaris. The derived crude oil is to serve as a feedstock for renewable diesel production. The constituents of this algae derived oil must be similar in structure and low in impurities, especially nitrogen and sulfur content, to allow for the economical upgrade of this oil to renewable diesel. Two methods for the generation of the crude oil were explored: direct oil extraction from the algal biomass and hydrothermal liquefaction of the algal biomass. Total algal lipid extraction from both dry and wet algal biomass was studied and multiple solvents, procedures and cell pretreatment methods were compared; this includes solvents at ambient conditions, supercritical carbon dioxide, liquefied dimethyl ether, ultrasonication, mechanical disruption and steaming. It was determined that pretreatment of the Chlorella vulgaris biomass is not necessary for total oil extraction, that total oil extraction from dry algae can be achieved by using a 95 percent ethanol solvent and that total oil extraction from wet algae can be achieved by using a 6:77:17 w/w/w ratio of water to ethanol to hexane. The optimal oil extraction procedure was scaled up and a process was developed to fractionate the algal biomass and isolate the lipid fractions conducive to upgrading to renewable diesel. The crude oil produced through this method was analyzed and found to be suitable for economical upgrade to renewable diesel. However biomass conversion to oil was low; only about 13.5 percent of the biomass could be converted to oil due to the relatively low lipid content of the Chlorella vulgaris (about 18 percent lipids on a dry weight basis). The hydrothermal liquefaction of the Chlorella vulgaris biomass was capable of converting about 44 percent of the initial Chlorella vulgaris biomass to bio-crude. However, the quality of the oil produced was not ideal for upgrading to renewable diesel due to the high nitrogen and sulfur content of the oil and the diverse molecular structures of the oil constituents. In conclusion, it was recommended that a method to enhance Chlorella vulgaris lipid content, such as nitrogen starvation or the introduction of sugars in the growth media, should be adopted prior to harvest and that the developed oil extraction procedure should be used to produce a renewable upgradable crude oil.

Whole Algae Hydrothermal Liquefaction Technology Pathway

Download Whole Algae Hydrothermal Liquefaction Technology Pathway PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : pages
Book Rating : 4.:/5 (16 download)

DOWNLOAD NOW!


Book Synopsis Whole Algae Hydrothermal Liquefaction Technology Pathway by :

Download or read book Whole Algae Hydrothermal Liquefaction Technology Pathway written by and published by . This book was released on 2013 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: In support of the Bioenergy Technologies Office, the National Renewable Energy Laboratory (NREL) and the Pacific Northwest National Laboratory (PNNL) are undertaking studies of biomass conversion technologies to hydrocarbon fuels to identify barriers and target research toward reducing conversion costs. Process designs and preliminary economic estimates for each of these pathway cases were developed using rigorous modeling tools (Aspen Plus and Chemcad). These analyses incorporated the best information available at the time of development, including data from recent pilot and bench-scale demonstrations, collaborative industrial and academic partners, and published literature and patents. This pathway case investigates the feasibility of using whole wet microalgae as a feedstock for conversion via hydrothermal liquefaction. Technical barriers and key research needs have been assessed in order for the hydrothermal liquefaction of microalgae to be competitive with petroleum-derived gasoline, diesel and jet range blendstocks.

Process Design and Economics for the Conversion of Algal Biomass to Hydrocarbons

Download Process Design and Economics for the Conversion of Algal Biomass to Hydrocarbons PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : pages
Book Rating : 4.:/5 (876 download)

DOWNLOAD NOW!


Book Synopsis Process Design and Economics for the Conversion of Algal Biomass to Hydrocarbons by :

Download or read book Process Design and Economics for the Conversion of Algal Biomass to Hydrocarbons written by and published by . This book was released on 2014 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Supply Chain Sustainability Analysis of Three Biofuel Pathways. Biochemical Conversion of Corn Stover to Ethanol Indirect Gasification of Southern Pine to Ethanol Pyrolysis of Hybrid Poplar to Hydrocarbon Fuels

Download Supply Chain Sustainability Analysis of Three Biofuel Pathways. Biochemical Conversion of Corn Stover to Ethanol Indirect Gasification of Southern Pine to Ethanol Pyrolysis of Hybrid Poplar to Hydrocarbon Fuels PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : pages
Book Rating : 4.:/5 (16 download)

DOWNLOAD NOW!


Book Synopsis Supply Chain Sustainability Analysis of Three Biofuel Pathways. Biochemical Conversion of Corn Stover to Ethanol Indirect Gasification of Southern Pine to Ethanol Pyrolysis of Hybrid Poplar to Hydrocarbon Fuels by :

Download or read book Supply Chain Sustainability Analysis of Three Biofuel Pathways. Biochemical Conversion of Corn Stover to Ethanol Indirect Gasification of Southern Pine to Ethanol Pyrolysis of Hybrid Poplar to Hydrocarbon Fuels written by and published by . This book was released on 2014 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Algal Biomass Conversion to Fuels via Combined Algae Processing (CAP): 2022 State of Technology and Future Research

Download Algal Biomass Conversion to Fuels via Combined Algae Processing (CAP): 2022 State of Technology and Future Research PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 0 pages
Book Rating : 4.:/5 (14 download)

DOWNLOAD NOW!


Book Synopsis Algal Biomass Conversion to Fuels via Combined Algae Processing (CAP): 2022 State of Technology and Future Research by :

Download or read book Algal Biomass Conversion to Fuels via Combined Algae Processing (CAP): 2022 State of Technology and Future Research written by and published by . This book was released on 2023 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: The annual State of Technology (SOT) assessment is an essential activity for platform research conducted under the Bioenergy Technologies Office (BETO). It allows for the impact of research progress (both directly achieved in-house at NREL and furnished by partner organizations) to be quantified in terms of economic improvements in the overall biofuel production process for a particular biomass processing pathway, whether based on terrestrial or algal biomass feedstocks. As such, initial benchmarks can be established for currently demonstrated performance, and progress can be tracked toward out-year goals to ultimately demonstrate economically viable biofuel technologies. NREL's algae SOT benchmarking efforts focus both on front-end algal biomass production and separately on back-end conversion to fuels through NREL's "combined algae processing" (CAP) pathway. The production model is based on outdoor long-term cultivation data, enabled by comprehensive algal biomass production trials conducted under Development of Integrated Screening, Cultivar Optimization, and Verification Research (DISCOVR) consortium efforts and driven by data furnished by Arizona State University's (ASU's) Arizona Center for Algae Technology and Innovation (AzCATI) test bed site. The CAP model is primarily based on experimental efforts conducted under NREL research and development projects, with some process parameters provided by partner organizations. Assumptions regarding the wet storage of algae use data provided by Idaho National Laboratory (INL), while parts of the polyurethane production process leverage BETO-funded research from collaborators at Algenesis and the University of California, San Diego (UCSD). This report focuses on back-end conversion of algal biomass through the CAP pathway, highlighting the 2022 updates to minimum fuel selling price (MFSP). This update incorporates improvements to fermentation performance for two biological pathways through carboxylic acid and 2,3-butanediol (BDO) intermediates, as demonstrated through parallel research on the biochemical conversion of corn stover. Improvements are applied to the glucose fraction of the biomass only, while parameters regarding the conversion of the mannose fraction (not a significant component in corn stover) are maintained consistently with prior CAP SOTs. Additional parameters are also updated to reflect the most current understanding of each pathway, including an increase in the catalyst loading requirement in the ketonization step of the acids pathway and a decrease in the fermentation productivity in the BDO pathway. Additionally, the biomass feedstock costs (minimum biomass selling price [MBSP]), yields, and seasonal variability from the upstream cultivation SOT model were also incorporated into downstream Aspen Plus CAP models.