Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Superconvergence Of Finite Element Approximations For Partial Differential Equations
Download Superconvergence Of Finite Element Approximations For Partial Differential Equations full books in PDF, epub, and Kindle. Read online Superconvergence Of Finite Element Approximations For Partial Differential Equations ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis Superconvergence in Galerkin Finite Element Methods by : Lars Wahlbin
Download or read book Superconvergence in Galerkin Finite Element Methods written by Lars Wahlbin and published by Springer. This book was released on 2006-11-14 with total page 179 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is essentially a set of lecture notes from a graduate seminar given at Cornell in Spring 1994. It treats basic mathematical theory for superconvergence in the context of second order elliptic problems. It is aimed at graduate students and researchers. The necessary technical tools are developed in the text although sometimes long proofs are merely referenced. The book gives a rather complete overview of the field of superconvergence (in time-independent problems). It is the first text with such a scope. It includes a very complete and up-to-date list of references.
Book Synopsis Finite Element Methods by : Michel Krizek
Download or read book Finite Element Methods written by Michel Krizek and published by Routledge. This book was released on 2017-11-22 with total page 370 pages. Available in PDF, EPUB and Kindle. Book excerpt: ""Based on the proceedings of the first conference on superconvergence held recently at the University of Jyvaskyla, Finland. Presents reviewed papers focusing on superconvergence phenomena in the finite element method. Surveys for the first time all known superconvergence techniques, including their proofs.
Book Synopsis The Finite Element Method and Its Reliability by : Ivo Babuška
Download or read book The Finite Element Method and Its Reliability written by Ivo Babuška and published by Oxford University Press. This book was released on 2001 with total page 820 pages. Available in PDF, EPUB and Kindle. Book excerpt: The finite element method is a numerical method widely used in engineering. Experience shows that unreliable computation can lead to very serious consequences. Hence reliability questions stand are at the forefront of engineering and theoretical interests. This book presents the mathematical theory of the finite element method and is the first to focus on the questions of how reliable computed results really are. It addresses among other topics the local behaviour, errors caused by pollution, superconvergence, and optimal meshes. Many computational examples illustrate the importance of the theoretical conclusions for practical computations. Graduate students, lecturers, and researchers in mathematics, engineering, and scientific computation will benefit from the clear structure of the book, and will find this a very useful reference.
Book Synopsis Advances in Numerical Methods and Applications by : Ivan Tomov Dimov
Download or read book Advances in Numerical Methods and Applications written by Ivan Tomov Dimov and published by World Scientific. This book was released on 1994 with total page 442 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis Galerkin Finite Element Methods for Parabolic Problems by : Vidar Thomee
Download or read book Galerkin Finite Element Methods for Parabolic Problems written by Vidar Thomee and published by Springer Science & Business Media. This book was released on 2013-04-17 with total page 310 pages. Available in PDF, EPUB and Kindle. Book excerpt: My purpose in this monograph is to present an essentially self-contained account of the mathematical theory of Galerkin finite element methods as applied to parabolic partial differential equations. The emphases and selection of topics reflects my own involvement in the field over the past 25 years, and my ambition has been to stress ideas and methods of analysis rather than to describe the most general and farreaching results possible. Since the formulation and analysis of Galerkin finite element methods for parabolic problems are generally based on ideas and results from the corresponding theory for stationary elliptic problems, such material is often included in the presentation. The basis of this work is my earlier text entitled Galerkin Finite Element Methods for Parabolic Problems, Springer Lecture Notes in Mathematics, No. 1054, from 1984. This has been out of print for several years, and I have felt a need and been encouraged by colleagues and friends to publish an updated version. In doing so I have included most of the contents of the 14 chapters of the earlier work in an updated and revised form, and added four new chapters, on semigroup methods, on multistep schemes, on incomplete iterative solution of the linear algebraic systems at the time levels, and on semilinear equations. The old chapters on fully discrete methods have been reworked by first treating the time discretization of an abstract differential equation in a Hilbert space setting, and the chapter on the discontinuous Galerkin method has been completely rewritten.
Book Synopsis Modeling, Simulation and Optimization for Science and Technology by : William Fitzgibbon
Download or read book Modeling, Simulation and Optimization for Science and Technology written by William Fitzgibbon and published by Springer. This book was released on 2014-06-18 with total page 252 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume contains thirteen articles on advances in applied mathematics and computing methods for engineering problems. Six papers are on optimization methods and algorithms with emphasis on problems with multiple criteria; four articles are on numerical methods for applied problems modeled with nonlinear PDEs; two contributions are on abstract estimates for error analysis; finally one paper deals with rare events in the context of uncertainty quantification. Applications include aerospace, glaciology and nonlinear elasticity. Herein is a selection of contributions from speakers at two conferences on applied mathematics held in June 2012 at the University of Jyväskylä, Finland. The first conference, “Optimization and PDEs with Industrial Applications” celebrated the seventieth birthday of Professor Jacques Périaux of the University of Jyväskylä and Polytechnic University of Catalonia (Barcelona Tech) and the second conference, “Optimization and PDEs with Applications” celebrated the seventy-fifth birthday of Professor Roland Glowinski of the University of Houston. This work should be of interest to researchers and practitioners as well as advanced students or engineers in computational and applied mathematics or mechanics.
Book Synopsis Spectral and High Order Methods for Partial Differential Equations ICOSAHOM 2014 by : Robert M. Kirby
Download or read book Spectral and High Order Methods for Partial Differential Equations ICOSAHOM 2014 written by Robert M. Kirby and published by Springer. This book was released on 2015-11-26 with total page 504 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book contains a selection of high quality papers, chosen among the best presentations during the International Conference on Spectral and High-Order Methods (2014), and provides an overview of the depth and breadth of the activities within this important research area. The carefully reviewed selection of papers will provide the reader with a snapshot of the state-of-the-art and help initiate new research directions through the extensive biography.
Book Synopsis Optimization in Solving Elliptic Problems by : Eugene G. D'yakonov
Download or read book Optimization in Solving Elliptic Problems written by Eugene G. D'yakonov and published by CRC Press. This book was released on 2018-05-04 with total page 414 pages. Available in PDF, EPUB and Kindle. Book excerpt: Optimization in Solving Elliptic Problems focuses on one of the most interesting and challenging problems of computational mathematics - the optimization of numerical algorithms for solving elliptic problems. It presents detailed discussions of how asymptotically optimal algorithms may be applied to elliptic problems to obtain numerical solutions meeting certain specified requirements. Beginning with an outline of the fundamental principles of numerical methods, this book describes how to construct special modifications of classical finite element methods such that for the arising grid systems, asymptotically optimal iterative methods can be applied. Optimization in Solving Elliptic Problems describes the construction of computational algorithms resulting in the required accuracy of a solution and having a pre-determined computational complexity. Construction of asymptotically optimal algorithms is demonstrated for multi-dimensional elliptic boundary value problems under general conditions. In addition, algorithms are developed for eigenvalue problems and Navier-Stokes problems. The development of these algorithms is based on detailed discussions of topics that include accuracy estimates of projective and difference methods, topologically equivalent grids and triangulations, general theorems on convergence of iterative methods, mixed finite element methods for Stokes-type problems, methods of solving fourth-order problems, and methods for solving classical elasticity problems. Furthermore, the text provides methods for managing basic iterative methods such as domain decomposition and multigrid methods. These methods, clearly developed and explained in the text, may be used to develop algorithms for solving applied elliptic problems. The mathematics necessary to understand the development of such algorithms is provided in the introductory material within the text, and common specifications of algorithms that have been developed for typical problems in mathema
Book Synopsis Finite Volumes for Complex Applications X—Volume 1, Elliptic and Parabolic Problems by : Emmanuel Franck
Download or read book Finite Volumes for Complex Applications X—Volume 1, Elliptic and Parabolic Problems written by Emmanuel Franck and published by Springer Nature. This book was released on 2023-11-01 with total page 381 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume comprises the first part of the proceedings of the 10th International Conference on Finite Volumes for Complex Applications, FVCA, held in Strasbourg, France, during October 30 to November 3, 2023. The Finite Volume method, and several of its variants, is a spatial discretization technique for partial differential equations based on the fundamental physical principle of conservation. Recent decades have brought significant success in the theoretical understanding of the method. Many finite volume methods are also built to preserve some properties of the continuous equations, including maximum principles, dissipativity, monotone decay of the free energy, asymptotic stability, or stationary solutions. Due to these properties, finite volume methods belong to the wider class of compatible discretization methods, which preserve qualitative properties of continuous problems at the discrete level. This structural approach to the discretization of partial differential equations becomes particularly important for multiphysics and multiscale applications. In recent years, the efficient implementation of these methods in numerical software packages, more specifically to be used in supercomputers, has drawn some attention. This volume contains all invited papers, as well as the contributed papers focusing on finite volume schemes for elliptic and parabolic problems. They include structure-preserving schemes, convergence proofs, and error estimates for problems governed by elliptic and parabolic partial differential equations. The second volume is focused on finite volume methods for hyperbolic and related problems, such as methods compatible with the low Mach number limit or able to exactly preserve steady solutions, the development and analysis of high order methods, or the discretization of kinetic equations.
Book Synopsis Scientific and Technical Aerospace Reports by :
Download or read book Scientific and Technical Aerospace Reports written by and published by . This book was released on 1995 with total page 602 pages. Available in PDF, EPUB and Kindle. Book excerpt: Lists citations with abstracts for aerospace related reports obtained from world wide sources and announces documents that have recently been entered into the NASA Scientific and Technical Information Database.
Book Synopsis Modeling, Mesh Generation, and Adaptive Numerical Methods for Partial Differential Equations by : Ivo Babuska
Download or read book Modeling, Mesh Generation, and Adaptive Numerical Methods for Partial Differential Equations written by Ivo Babuska and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 487 pages. Available in PDF, EPUB and Kindle. Book excerpt: With considerations such as complex-dimensional geometries and nonlinearity, the computational solution of partial differential systems has become so involved that it is important to automate decisions that have been normally left to the individual. This book covers such decisions: 1) mesh generation with links to the software generating the domain geometry, 2) solution accuracy and reliability with mesh selection linked to solution generation. This book is suited for mathematicians, computer scientists and engineers and is intended to encourage interdisciplinary interaction between the diverse groups.
Book Synopsis A Posteriori Error Estimation in Finite Element Analysis by : Mark Ainsworth
Download or read book A Posteriori Error Estimation in Finite Element Analysis written by Mark Ainsworth and published by John Wiley & Sons. This book was released on 2011-09-28 with total page 266 pages. Available in PDF, EPUB and Kindle. Book excerpt: An up-to-date, one-stop reference-complete with applications This volume presents the most up-to-date information available on aposteriori error estimation for finite element approximation inmechanics and mathematics. It emphasizes methods for ellipticboundary value problems and includes applications to incompressibleflow and nonlinear problems. Recent years have seen an explosion in the study of a posteriorierror estimators due to their remarkable influence on improvingboth accuracy and reliability in scientific computing. In an effortto provide an accessible source, the authors have sought to presentkey ideas and common principles on a sound mathematicalfooting. Topics covered in this timely reference include: * Implicit and explicit a posteriori error estimators * Recovery-based error estimators * Estimators, indicators, and hierarchic bases * The equilibrated residual method * Methodology for the comparison of estimators * Estimation of errors in quantities of interest A Posteriori Error Estimation in Finite Element Analysis is a lucidand convenient resource for researchers in almost any field offinite element methods, and for applied mathematicians andengineers who have an interest in error estimation and/or finiteelements.
Book Synopsis Numerical Analysis: Historical Developments in the 20th Century by : C. Brezinski
Download or read book Numerical Analysis: Historical Developments in the 20th Century written by C. Brezinski and published by Elsevier. This book was released on 2012-12-02 with total page 512 pages. Available in PDF, EPUB and Kindle. Book excerpt: Numerical analysis has witnessed many significant developments in the 20th century. This book brings together 16 papers dealing with historical developments, survey papers and papers on recent trends in selected areas of numerical analysis, such as: approximation and interpolation, solution of linear systems and eigenvalue problems, iterative methods, quadrature rules, solution of ordinary-, partial- and integral equations. The papers are reprinted from the 7-volume project of the Journal of Computational and Applied Mathematics on '/homepage/sac/cam/na2000/index.htmlNumerical Analysis 2000'. An introductory survey paper deals with the history of the first courses on numerical analysis in several countries and with the landmarks in the development of important algorithms and concepts in the field.
Book Synopsis Numerical Approximation of Partial Differential Equations by : E.L. Ortiz
Download or read book Numerical Approximation of Partial Differential Equations written by E.L. Ortiz and published by Elsevier. This book was released on 1987-02-01 with total page 447 pages. Available in PDF, EPUB and Kindle. Book excerpt: This selection of papers is concerned with problems arising in the numerical solution of differential equations, with an emphasis on partial differential equations. There is a balance between theoretical studies of approximation processes, the analysis of specific numerical techniques and the discussion of their application to concrete problems relevant to engineering and science. Special consideration has been given to innovative numerical techniques and to the treatment of three-dimensional and singular problems. These topics are discussed in several of the invited papers.The contributed papers are divided into five parts: techniques of approximation theory which are basic to the numerical treatment of differential equations; numerical techniques based on discrete processes; innovative methods based on polynomial and rational approximation; variational inequalities, conformal transformation and asymptotic techniques; and applications of differential equations to problems in science and engineering.
Book Synopsis Simplicial Partitions with Applications to the Finite Element Method by : Jan Brandts
Download or read book Simplicial Partitions with Applications to the Finite Element Method written by Jan Brandts and published by Springer Nature. This book was released on 2020-10-05 with total page 197 pages. Available in PDF, EPUB and Kindle. Book excerpt: This monograph focuses on the mathematical and numerical analysis of simplicial partitions and the finite element method. This active area of research has become an essential part of physics and engineering, for example in the study of problems involving heat conduction, linear elasticity, semiconductors, Maxwell's equations, Einstein's equations and magnetic and gravitational fields. These problems require the simulation of various phenomena and physical fields over complicated structures in three (and higher) dimensions. Since not all structures can be decomposed into simpler objects like d-dimensional rectangular blocks, simplicial partitions are important. In this book an emphasis is placed on angle conditions guaranteeing the convergence of the finite element method for elliptic PDEs with given boundary conditions. It is aimed at a general mathematical audience who is assumed to be familiar with only a few basic results from linear algebra, geometry, and mathematical and numerical analysis.
Book Synopsis Numerical Algebra, Matrix Theory, Differential-Algebraic Equations and Control Theory by : Peter Benner
Download or read book Numerical Algebra, Matrix Theory, Differential-Algebraic Equations and Control Theory written by Peter Benner and published by Springer. This book was released on 2015-05-09 with total page 635 pages. Available in PDF, EPUB and Kindle. Book excerpt: This edited volume highlights the scientific contributions of Volker Mehrmann, a leading expert in the area of numerical (linear) algebra, matrix theory, differential-algebraic equations and control theory. These mathematical research areas are strongly related and often occur in the same real-world applications. The main areas where such applications emerge are computational engineering and sciences, but increasingly also social sciences and economics. This book also reflects some of Volker Mehrmann's major career stages. Starting out working in the areas of numerical linear algebra (his first full professorship at TU Chemnitz was in "Numerical Algebra," hence the title of the book) and matrix theory, Volker Mehrmann has made significant contributions to these areas ever since. The highlights of these are discussed in Parts I and II of the present book. Often the development of new algorithms in numerical linear algebra is motivated by problems in system and control theory. These and his later major work on differential-algebraic equations, to which he together with Peter Kunkel made many groundbreaking contributions, are the topic of the chapters in Part III. Besides providing a scientific discussion of Volker Mehrmann's work and its impact on the development of several areas of applied mathematics, the individual chapters stand on their own as reference works for selected topics in the fields of numerical (linear) algebra, matrix theory, differential-algebraic equations and control theory.
Download or read book Finite Elements written by Ivo Babuska and published by . This book was released on 2010-11-04 with total page 336 pages. Available in PDF, EPUB and Kindle. Book excerpt: Most of the many books on finite elements are devoted either to mathematical theory or to engineering applications, but not to both. This book presents computed numbers which not only illustrate the theory but can only be analysed using the theory. This approach, both dual and interacting between theory and computation makes this book unique.