Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Sum Formula For Sl 2 Over A Totally Real Number Field
Download Sum Formula For Sl 2 Over A Totally Real Number Field full books in PDF, epub, and Kindle. Read online Sum Formula For Sl 2 Over A Totally Real Number Field ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis Sum Formula for SL$_2$ over a Totally Real Number Field by : Roelof W. Bruggeman
Download or read book Sum Formula for SL$_2$ over a Totally Real Number Field written by Roelof W. Bruggeman and published by American Mathematical Soc.. This book was released on 2009-01-21 with total page 96 pages. Available in PDF, EPUB and Kindle. Book excerpt: The authors prove a general form of the sum formula $\mathrm{SL}_2$ over a totally real number field. This formula relates sums of Kloosterman sums to products of Fourier coefficients of automorphic representations. The authors give two versions: the spectral sum formula (in short: sum formula) and the Kloosterman sum formula. They have the independent test function in the spectral term, in the sum of Kloosterman sums, respectively.
Book Synopsis The Dynamics of Modulated Wave Trains by : A. Doelman
Download or read book The Dynamics of Modulated Wave Trains written by A. Doelman and published by American Mathematical Soc.. This book was released on 2009 with total page 122 pages. Available in PDF, EPUB and Kindle. Book excerpt: The authors investigate the dynamics of weakly-modulated nonlinear wave trains. For reaction-diffusion systems and for the complex Ginzburg-Landau equation, they establish rigorously that slowly varying modulations of wave trains are well approximated by solutions to the Burgers equation over the natural time scale. In addition to the validity of the Burgers equation, they show that the viscous shock profiles in the Burgers equation for the wave number can be found as genuine modulated waves in the underlying reaction-diffusion system. In other words, they establish the existence and stability of waves that are time-periodic in appropriately moving coordinate frames which separate regions in physical space that are occupied by wave trains of different, but almost identical, wave number. The speed of these shocks is determined by the Rankine-Hugoniot condition where the flux is given by the nonlinear dispersion relation of the wave trains. The group velocities of the wave trains in a frame moving with the interface are directed toward the interface. Using pulse-interaction theory, the authors also consider similar shock profiles for wave trains with large wave number, that is, for an infinite sequence of widely separated pulses. The results presented here are applied to the FitzHugh-Nagumo equation and to hydrodynamic stability problems.
Book Synopsis Random Sets and Invariants for (Type II) Continuous Tensor Product Systems of Hilbert Spaces by : Volkmar Liebscher
Download or read book Random Sets and Invariants for (Type II) Continuous Tensor Product Systems of Hilbert Spaces written by Volkmar Liebscher and published by American Mathematical Soc.. This book was released on 2009-04-10 with total page 124 pages. Available in PDF, EPUB and Kindle. Book excerpt: In a series of papers Tsirelson constructed from measure types of random sets or (generalised) random processes a new range of examples for continuous tensor product systems of Hilbert spaces introduced by Arveson for classifying $E_0$-semigroups upto cocycle conjugacy. This paper starts from establishing the converse. So the author connects each continuous tensor product system of Hilbert spaces with measure types of distributions of random (closed) sets in $[0,1]$ or $\mathbb R_+$. These measure types are stationary and factorise over disjoint intervals. In a special case of this construction, the corresponding measure type is an invariant of the product system. This shows, completing in a more systematic way the Tsirelson examples, that the classification scheme for product systems into types $\mathrm{I}_n$, $\mathrm{II}_n$ and $\mathrm{III}$ is not complete. Moreover, based on a detailed study of this kind of measure types, the author constructs for each stationary factorising measure type a continuous tensor product system of Hilbert spaces such that this measure type arises as the before mentioned invariant.
Book Synopsis Scattering Resonances for Several Small Convex Bodies and the Lax-Phillips Conjecture by : Luchezar N. Stoyanov
Download or read book Scattering Resonances for Several Small Convex Bodies and the Lax-Phillips Conjecture written by Luchezar N. Stoyanov and published by American Mathematical Soc.. This book was released on 2009 with total page 90 pages. Available in PDF, EPUB and Kindle. Book excerpt: This work deals with scattering by obstacles which are finite disjoint unions of strictly convex bodies with smooth boundaries in an odd dimensional Euclidean space. The class of obstacles of this type which is considered are contained in a given (large) ball and have some additional properties.
Book Synopsis Locally Toric Manifolds and Singular Bohr-Sommerfeld Leaves by : Mark D. Hamilton
Download or read book Locally Toric Manifolds and Singular Bohr-Sommerfeld Leaves written by Mark D. Hamilton and published by American Mathematical Soc.. This book was released on 2010 with total page 73 pages. Available in PDF, EPUB and Kindle. Book excerpt: "Volume 207, number 971 (first of 5 numbers)."
Book Synopsis The Moment Maps in Diffeology by : Patrick Iglesias-Zemmour
Download or read book The Moment Maps in Diffeology written by Patrick Iglesias-Zemmour and published by American Mathematical Soc.. This book was released on 2010 with total page 85 pages. Available in PDF, EPUB and Kindle. Book excerpt: "This memoir presents a generalization of the moment maps to the category {Diffeology}. This construction applies to every smooth action of any diffeological group G preserving a closed 2-form w, defined on some diffeological space X. In particular, that reveals a universal construction, associated to the action of the whole group of automorphisms Diff (X, w). By considering directly the space of momenta of any diffeological group G, that is the space g* of left-invariant 1-forms on G, this construction avoids any reference to Lie algebra or any notion of vector fields, or does not involve any functional analysis. These constructions of the various moment maps are illustrated by many examples, some of them originals and others suggested by the mathematical literature."--Publisher's description.
Book Synopsis Approximate Homotopy of Homomorphisms from $C(X)$ into a Simple $C^*$-Algebra by : Huaxin Lin
Download or read book Approximate Homotopy of Homomorphisms from $C(X)$ into a Simple $C^*$-Algebra written by Huaxin Lin and published by American Mathematical Soc.. This book was released on 2010 with total page 144 pages. Available in PDF, EPUB and Kindle. Book excerpt: "Volume 205, number 963 (second of 5 numbers)."
Book Synopsis Twisted Pseudodifferential Calculus and Application to the Quantum Evolution of Molecules by : Andr Martinez
Download or read book Twisted Pseudodifferential Calculus and Application to the Quantum Evolution of Molecules written by Andr Martinez and published by American Mathematical Soc.. This book was released on 2009-06-05 with total page 96 pages. Available in PDF, EPUB and Kindle. Book excerpt: The authors construct an abstract pseudodifferential calculus with operator-valued symbol, suitable for the treatment of Coulomb-type interactions, and they apply it to the study of the quantum evolution of molecules in the Born-Oppenheimer approximation, in the case of the electronic Hamiltonian admitting a local gap in its spectrum. In particular, they show that the molecular evolution can be reduced to the one of a system of smooth semiclassical operators, the symbol of which can be computed explicitely. In addition, they study the propagation of certain wave packets up to long time values of Ehrenfest order.
Book Synopsis Small Divisor Problem in the Theory of Three-Dimensional Water Gravity Waves by : Grard Iooss
Download or read book Small Divisor Problem in the Theory of Three-Dimensional Water Gravity Waves written by Grard Iooss and published by American Mathematical Soc.. This book was released on 2009-06-05 with total page 144 pages. Available in PDF, EPUB and Kindle. Book excerpt: The authors consider doubly-periodic travelling waves at the surface of an infinitely deep perfect fluid, only subjected to gravity $g$ and resulting from the nonlinear interaction of two simply periodic travelling waves making an angle $2\theta$ between them. Denoting by $\mu =gL/c^{2}$ the dimensionless bifurcation parameter ( $L$ is the wave length along the direction of the travelling wave and $c$ is the velocity of the wave), bifurcation occurs for $\mu = \cos \theta$. For non-resonant cases, we first give a large family of formal three-dimensional gravity travelling waves, in the form of an expansion in powers of the amplitudes of two basic travelling waves. ``Diamond waves'' are a particular case of such waves, when they are symmetric with respect to the direction of propagation. The main object of the paper is the proof of existence of such symmetric waves having the above mentioned asymptotic expansion. Due to the occurence of small divisors, the main difficulty is the inversion of the linearized operator at a non trivial point, for applying the Nash Moser theorem. This operator is the sum of a second order differentiation along a certain direction, and an integro-differential operator of first order, both depending periodically of coordinates. It is shown that for almost all angles $\theta$, the 3-dimensional travelling waves bifurcate for a set of ``good'' values of the bifurcation parameter having asymptotically a full measure near the bifurcation curve in the parameter plane $(\theta,\mu ).$
Book Synopsis Unitary Invariants in Multivariable Operator Theory by : Gelu Popescu
Download or read book Unitary Invariants in Multivariable Operator Theory written by Gelu Popescu and published by American Mathematical Soc.. This book was released on 2009-06-05 with total page 105 pages. Available in PDF, EPUB and Kindle. Book excerpt: This paper concerns unitary invariants for $n$-tuples $T:=(T_1,\ldots, T_n)$ of (not necessarily commuting) bounded linear operators on Hilbert spaces. The author introduces a notion of joint numerical radius and works out its basic properties. Multivariable versions of Berger's dilation theorem, Berger-Kato-Stampfli mapping theorem, and Schwarz's lemma from complex analysis are obtained. The author studies the joint (spatial) numerical range of $T$ in connection with several unitary invariants for $n$-tuples of operators such as: right joint spectrum, joint numerical radius, euclidean operator radius, and joint spectral radius. He also proves an analogue of Toeplitz-Hausdorff theorem on the convexity of the spatial numerical range of an operator on a Hilbert space, for the joint numerical range of operators in the noncommutative analytic Toeplitz algebra $F_n^\infty$.
Book Synopsis Uniqueness and Stability in Determining a Rigid Inclusion in an Elastic Body by : Antonino Morassi
Download or read book Uniqueness and Stability in Determining a Rigid Inclusion in an Elastic Body written by Antonino Morassi and published by American Mathematical Soc.. This book was released on 2009-06-05 with total page 74 pages. Available in PDF, EPUB and Kindle. Book excerpt: The authors consider the inverse problem of determining a rigid inclusion inside an isotropic elastic body $\Omega$, from a single measurement of traction and displacement taken on the boundary of $\Omega$. For this severely ill-posed problem they prove uniqueness and a conditional stability estimate of log-log type.
Book Synopsis The Minimal Polynomials of Unipotent Elements in Irreducible Representations of the Classical Groups in Odd Characteristic by : Irina D. Suprunenko
Download or read book The Minimal Polynomials of Unipotent Elements in Irreducible Representations of the Classical Groups in Odd Characteristic written by Irina D. Suprunenko and published by American Mathematical Soc.. This book was released on 2009-06-05 with total page 168 pages. Available in PDF, EPUB and Kindle. Book excerpt: The minimal polynomials of the images of unipotent elements in irreducible rational representations of the classical algebraic groups over fields of odd characteristic are found. These polynomials have the form $(t-1)^d$ and hence are completely determined by their degrees. In positive characteristic the degree of such polynomial cannot exceed the order of a relevant element. It occurs that for each unipotent element the degree of its minimal polynomial in an irreducible representation is equal to the order of this element provided the highest weight of the representation is large enough with respect to the ground field characteristic. On the other hand, classes of unipotent elements for which in every nontrivial representation the degree of the minimal polynomial is equal to the order of the element are indicated. In the general case the problem of computing the minimal polynomial of the image of a given element of order $p^s$ in a fixed irreducible representation of a classical group over a field of characteristic $p>2$ can be reduced to a similar problem for certain $s$ unipotent elements and a certain irreducible representation of some semisimple group over the field of complex numbers. For the latter problem an explicit algorithm is given. Results of explicit computations for groups of small ranks are contained in Tables I-XII. The article may be regarded as a contribution to the programme of extending the fundamental results of Hall and Higman (1956) on the minimal polynomials from $p$-solvable linear groups to semisimple groups.
Book Synopsis Cohomological Invariants: Exceptional Groups and Spin Groups by : Skip Garibaldi
Download or read book Cohomological Invariants: Exceptional Groups and Spin Groups written by Skip Garibaldi and published by American Mathematical Soc.. This book was released on 2009-06-05 with total page 102 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume concerns invariants of $G$-torsors with values in mod $p$ Galois cohomology--in the sense of Serre's lectures in the book Cohomological invariants in Galois cohomology--for various simple algebraic groups $G$ and primes $p$. The author determines the invariants for the exceptional groups $F_4$ mod 3, simply connected $E_6$ mod 3, $E_7$ mod 3, and $E_8$ mod 5. He also determines the invariants of $\mathrm{Spin}_n$ mod 2 for $n \leq 12$ and constructs some invariants of $\mathrm{Spin}_{14}$. Along the way, the author proves that certain maps in nonabelian cohomology are surjective. These surjectivities give as corollaries Pfister's results on 10- and 12-dimensional quadratic forms and Rost's theorem on 14-dimensional quadratic forms. This material on quadratic forms and invariants of $\mathrm{Spin}_n$ is based on unpublished work of Markus Rost. An appendix by Detlev Hoffmann proves a generalization of the Common Slot Theorem for 2-Pfister quadratic forms.
Book Synopsis Hilbert Modular Surfaces by : Gerard van der Geer
Download or read book Hilbert Modular Surfaces written by Gerard van der Geer and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 301 pages. Available in PDF, EPUB and Kindle. Book excerpt: Over the last 15 years important results have been achieved in the field of Hilbert Modular Varieties. Though the main emphasis of this book is on the geometry of Hilbert modular surfaces, both geometric and arithmetic aspects are treated. An abundance of examples - in fact a whole chapter - completes this competent presentation of the subject. This Ergebnisbericht will soon become an indispensible tool for graduate students and researchers in this field.
Book Synopsis Geometry, Analysis and Topology of Discrete Groups by : Lizhen Ji
Download or read book Geometry, Analysis and Topology of Discrete Groups written by Lizhen Ji and published by . This book was released on 2008 with total page 504 pages. Available in PDF, EPUB and Kindle. Book excerpt: Presents 15 papers treating discrete groups as they occur in areas such as algebra, analysis, geometry, number theory and topology. This work helps graduate students and researchers to understand the structures and applications of discrete subgroups of Lie groups and locally symmetric spaces.
Book Synopsis Harmonic Analysis on Symmetric Spaces and Applications II by : Audrey Terras
Download or read book Harmonic Analysis on Symmetric Spaces and Applications II written by Audrey Terras and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 395 pages. Available in PDF, EPUB and Kindle. Book excerpt: Well, finally, here it is-the long-promised "Revenge of the Higher Rank Symmetric Spaces and Their Fundamental Domains." When I began work on it in 1977, I would probably have stopped immediately if someone had told me that ten years would pass before I would declare it "finished." Yes, I am declaring it finished-though certainly not perfected. There is a large amount of work going on at the moment as the piles of preprints reach the ceiling. Nevertheless, it is summer and the ocean calls. So I am not going to spend another ten years revising and polishing. But, gentle reader, do send me your corrections and even your preprints. Thanks to your work, there is an Appendix at the end of this volume with corrections to Volume I. I said it all in the Preface to Volume I. So I will try not to repeat myself here. Yes, the "recent trends" mentioned in that Preface are still just as recent.
Book Synopsis Harmonic Analysis on Symmetric Spaces—Higher Rank Spaces, Positive Definite Matrix Space and Generalizations by : Audrey Terras
Download or read book Harmonic Analysis on Symmetric Spaces—Higher Rank Spaces, Positive Definite Matrix Space and Generalizations written by Audrey Terras and published by Springer. This book was released on 2016-04-26 with total page 500 pages. Available in PDF, EPUB and Kindle. Book excerpt: This text is an introduction to harmonic analysis on symmetric spaces, focusing on advanced topics such as higher rank spaces, positive definite matrix space and generalizations. It is intended for beginning graduate students in mathematics or researchers in physics or engineering. As with the introductory book entitled "Harmonic Analysis on Symmetric Spaces - Euclidean Space, the Sphere, and the Poincaré Upper Half Plane, the style is informal with an emphasis on motivation, concrete examples, history, and applications. The symmetric spaces considered here are quotients X=G/K, where G is a non-compact real Lie group, such as the general linear group GL(n,P) of all n x n non-singular real matrices, and K=O(n), the maximal compact subgroup of orthogonal matrices. Other examples are Siegel's upper half "plane" and the quaternionic upper half "plane". In the case of the general linear group, one can identify X with the space Pn of n x n positive definite symmetric matrices. Many corrections and updates have been incorporated in this new edition. Updates include discussions of random matrix theory and quantum chaos, as well as recent research on modular forms and their corresponding L-functions in higher rank. Many applications have been added, such as the solution of the heat equation on Pn, the central limit theorem of Donald St. P. Richards for Pn, results on densest lattice packing of spheres in Euclidean space, and GL(n)-analogs of the Weyl law for eigenvalues of the Laplacian in plane domains. Topics featured throughout the text include inversion formulas for Fourier transforms, central limit theorems, fundamental domains in X for discrete groups Γ (such as the modular group GL(n,Z) of n x n matrices with integer entries and determinant ±1), connections with the problem of finding densest lattice packings of spheres in Euclidean space, automorphic forms, Hecke operators, L-functions, and the Selberg trace formula and its applications in spectral theory as well as number theory.