Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Study Of Iii V Nanostructures On Gap For Lasing Emission On Si
Download Study Of Iii V Nanostructures On Gap For Lasing Emission On Si full books in PDF, epub, and Kindle. Read online Study Of Iii V Nanostructures On Gap For Lasing Emission On Si ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis Semiconductor Nanostructures for Optoelectronic Devices by : Gyu-Chul Yi
Download or read book Semiconductor Nanostructures for Optoelectronic Devices written by Gyu-Chul Yi and published by Springer Science & Business Media. This book was released on 2012-01-13 with total page 347 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents the fabrication of optoelectronic nanodevices. The structures considered are nanowires, nanorods, hybrid semiconductor nanostructures, wide bandgap nanostructures for visible light emitters and graphene. The device applications of these structures are broadly explained. The book deals also with the characterization of semiconductor nanostructures. It appeals to researchers and graduate students.
Book Synopsis Towards the First Silicon Laser by : Lorenzo Pavesi
Download or read book Towards the First Silicon Laser written by Lorenzo Pavesi and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 495 pages. Available in PDF, EPUB and Kindle. Book excerpt: Silicon, the leading material in microelectronics during the last four decades, also promises to be the key material in the future. Despite many claims that silicon technology has reached fundamental limits, the performance of silicon microelectronics continues to improve steadily. The same holds for almost all the applications for which Si was considered to be unsuitable. The main exception to this positive trend is the silicon laser, which has not been demonstrated to date. The main reason for this comes from a fundamental limitation related to the indirect nature of the Si band-gap. In the recent past, many different approaches have been taken to achieve this goal: dislocated silicon, extremely pure silicon, silicon nanocrystals, porous silicon, Er doped Si-Ge, SiGe alloys and multiquantum wells, SiGe quantum dots, SiGe quantum cascade structures, shallow impurity centers in silicon and Er doped silicon. All of these are abundantly illustrated in the present book.
Book Synopsis Laser Ablation in Liquids by : Guowei Yang
Download or read book Laser Ablation in Liquids written by Guowei Yang and published by CRC Press. This book was released on 2012-02-22 with total page 1166 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book focuses on the fundamental concepts and physical and chemical aspects of pulsed laser ablation of solid targets in liquid environments and its applications in the preparation of nanomaterials and fabrication of nanostructures. The areas of focus include basic thermodynamic and kinetic processes of laser ablation in liquids, and its applic
Book Synopsis Hot Electrons in Semiconductors by : N. Balkan
Download or read book Hot Electrons in Semiconductors written by N. Balkan and published by . This book was released on 1998 with total page 536 pages. Available in PDF, EPUB and Kindle. Book excerpt: Under certain conditions electrons in a semiconductor become much hotter than the surrounding crystal lattice. When this happens, Ohm's Law breaks down: current no longer increases linearly with voltage and may even decrease. Hot electrons have long been a challenging problem in condensed matter physics and remain important in semiconductor research. Recent advances in technology have led to semiconductors with submicron dimensions, where electrons can be confined to two (quantum well), one (quantum wire), or zero (quantum dot) dimensions. In these devices small voltages heat electrons rapidly, inducing complex nonlinear behavior; the study of hot electrons is central to their further development. This book is the only comprehensive and up-to-date coverage of hot electrons. Intended for both established researchers and graduate students, it gives a complete account of the historical development of the subject, together with current research and future trends, and covers the physics of hot electrons in bulk and low-dimensional device technology. The contributions are from leading scientists in the field and are grouped broadly into five categories: introduction and overview; hot electron-phonon interactions and ultra-fast phenomena in bulk and two-dimensional structures; hot electrons in quantum wires and dots; hot electron tunneling and transport in superlattices; and novel devices based on hot electron transport.
Book Synopsis Metalorganic Vapor Phase Epitaxy (MOVPE) by : Stuart Irvine
Download or read book Metalorganic Vapor Phase Epitaxy (MOVPE) written by Stuart Irvine and published by John Wiley & Sons. This book was released on 2019-10-07 with total page 582 pages. Available in PDF, EPUB and Kindle. Book excerpt: Systematically discusses the growth method, material properties, and applications for key semiconductor materials MOVPE is a chemical vapor deposition technique that produces single or polycrystalline thin films. As one of the key epitaxial growth technologies, it produces layers that form the basis of many optoelectronic components including mobile phone components (GaAs), semiconductor lasers and LEDs (III-Vs, nitrides), optical communications (oxides), infrared detectors, photovoltaics (II-IV materials), etc. Featuring contributions by an international group of academics and industrialists, this book looks at the fundamentals of MOVPE and the key areas of equipment/safety, precursor chemicals, and growth monitoring. It covers the most important materials from III-V and II-VI compounds to quantum dots and nanowires, including sulfides and selenides and oxides/ceramics. Sections in every chapter of Metalorganic Vapor Phase Epitaxy (MOVPE): Growth, Materials Properties and Applications cover the growth of the particular materials system, the properties of the resultant material, and its applications. The book offers information on arsenides, phosphides, and antimonides; nitrides; lattice-mismatched growth; CdTe, MCT (mercury cadmium telluride); ZnO and related materials; equipment and safety; and more. It also offers a chapter that looks at the future of the technique. Covers, in order, the growth method, material properties, and applications for each material Includes chapters on the fundamentals of MOVPE and the key areas of equipment/safety, precursor chemicals, and growth monitoring Looks at important materials such as III-V and II-VI compounds, quantum dots, and nanowires Provides topical and wide-ranging coverage from well-known authors in the field Part of the Materials for Electronic and Optoelectronic Applications series Metalorganic Vapor Phase Epitaxy (MOVPE): Growth, Materials Properties and Applications is an excellent book for graduate students, researchers in academia and industry, as well as specialist courses at undergraduate/postgraduate level in the area of epitaxial growth (MOVPE/ MOCVD/ MBE).
Book Synopsis Device Applications of Silicon Nanocrystals and Nanostructures by : Nobuyoshi Koshida
Download or read book Device Applications of Silicon Nanocrystals and Nanostructures written by Nobuyoshi Koshida and published by Springer Science & Business Media. This book was released on 2008-12-11 with total page 350 pages. Available in PDF, EPUB and Kindle. Book excerpt: Recent developments in the technology of silicon nanocrystals and silicon nanostructures, where quantum-size effects are important, are systematically described including examples of device applications. Due to the strong quantum confinement effect, the material properties are freed from the usual indirect- or direct-bandgap regime, and the optical, electrical, thermal, and chemical properties of these nanocrystalline and nanostructured semiconductors are drastically changed from those of bulk silicon. In addition to efficient visible luminescence, various other useful material functions are induced in nanocrystalline silicon and periodic silicon nanostructures. Some novel devices and applications, in fields such as photonics (electroluminescence diode, microcavity, and waveguide), electronics (single-electron device, spin transistor, nonvolatile memory, and ballistic electron emitter), acoustics, and biology, have been developed by the use of these quantum-induced functions in ways different from the conventional scaling principle for ULSI.
Book Synopsis Mechanical Structures and Smart Materials by : Chris R. Bowen
Download or read book Mechanical Structures and Smart Materials written by Chris R. Bowen and published by Trans Tech Publications Ltd. This book was released on 2014-01-03 with total page 737 pages. Available in PDF, EPUB and Kindle. Book excerpt: Selected, peer reviewed papers from the 2013 International Conference on Mechanical Structures and Smart Materials (ICMSSM 2013), November 16-17, 2013, Xiamen, China
Book Synopsis Photonic Integration and Photonics-Electronics Convergence on Silicon Platform by : Koji Yamada
Download or read book Photonic Integration and Photonics-Electronics Convergence on Silicon Platform written by Koji Yamada and published by Frontiers Media SA. This book was released on 2015-11-10 with total page 111 pages. Available in PDF, EPUB and Kindle. Book excerpt: Silicon photonics technology, which has the DNA of silicon electronics technology, promises to provide a compact photonic integration platform with high integration density, mass-producibility, and excellent cost performance. This technology has been used to develop and to integrate various photonic functions on silicon substrate. Moreover, photonics-electronics convergence based on silicon substrate is now being pursued. Thanks to these features, silicon photonics will have the potential to be a superior technology used in the construction of energy-efficient cost-effective apparatuses for various applications, such as communications, information processing, and sensing. Considering the material characteristics of silicon and difficulties in microfabrication technology, however, silicon by itself is not necessarily an ideal material. For example, silicon is not suitable for light emitting devices because it is an indirect transition material. The resolution and dynamic range of silicon-based interference devices, such as wavelength filters, are significantly limited by fabrication errors in microfabrication processes. For further performance improvement, therefore, various assisting materials, such as indium-phosphide, silicon-nitride, germanium-tin, are now being imported into silicon photonics by using various heterogeneous integration technologies, such as low-temperature film deposition and wafer/die bonding. These assisting materials and heterogeneous integration technologies would also expand the application field of silicon photonics technology. Fortunately, silicon photonics technology has superior flexibility and robustness for heterogeneous integration. Moreover, along with photonic functions, silicon photonics technology has an ability of integration of electronic functions. In other words, we are on the verge of obtaining an ultimate technology that can integrate all photonic and electronic functions on a single Si chip. This e-Book aims at covering recent developments of the silicon photonic platform and novel functionalities with heterogeneous material integrations on this platform.
Book Synopsis Characterization of Semiconductor Heterostructures and Nanostructures by : G. Margaritondo
Download or read book Characterization of Semiconductor Heterostructures and Nanostructures written by G. Margaritondo and published by Elsevier Inc. Chapters. This book was released on 2013-04-11 with total page 62 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis Semiconductor Nanostructures by : Dieter Bimberg
Download or read book Semiconductor Nanostructures written by Dieter Bimberg and published by Springer Science & Business Media. This book was released on 2008-06-03 with total page 369 pages. Available in PDF, EPUB and Kindle. Book excerpt: Reducing the size of a coherently grown semiconductor cluster in all three directions of space to a value below the de Broglie wavelength of a charge carrier leads to complete quantization of the energy levels, density of states, etc. Such “quantum dots” are more similar to giant atoms in a dielectric cage than to classical solids or semiconductors showing a dispersion of energy as a function of wavevector. Their electronic and optical properties depend strongly on their size and shape, i.e. on their geometry. By designing the geometry by controlling the growth of QDs, absolutely novel possibilities for material design leading to novel devices are opened. This multiauthor book written by world-wide recognized leaders of their particular fields and edited by the recipient of the Max-Born Award and Medal 2006 Professor Dieter Bimberg reports on the state of the art of the growing of quantum dots, the theory of self-organised growth, the theory of electronic and excitonic states, optical properties and transport in a variety of materials. It covers the subject from the early work beginning of the 1990s up to 2006. The topics addressed in the book are the focus of research in all leading semiconductor and optoelectronic device laboratories of the world.
Book Synopsis Molecular Beam Epitaxy by : Mohamed Henini
Download or read book Molecular Beam Epitaxy written by Mohamed Henini and published by Elsevier. This book was released on 2018-06-27 with total page 790 pages. Available in PDF, EPUB and Kindle. Book excerpt: Molecular Beam Epitaxy (MBE): From Research to Mass Production, Second Edition, provides a comprehensive overview of the latest MBE research and applications in epitaxial growth, along with a detailed discussion and 'how to' on processing molecular or atomic beams that occur on the surface of a heated crystalline substrate in a vacuum. The techniques addressed in the book can be deployed wherever precise thin-film devices with enhanced and unique properties for computing, optics or photonics are required. It includes new semiconductor materials, new device structures that are commercially available, and many that are at the advanced research stage. This second edition covers the advances made by MBE, both in research and in the mass production of electronic and optoelectronic devices. Enhancements include new chapters on MBE growth of 2D materials, Si-Ge materials, AIN and GaN materials, and hybrid ferromagnet and semiconductor structures. - Condenses the fundamental science of MBE into a modern reference, speeding up literature review - Discusses new materials, novel applications and new device structures, grounding current commercial applications with modern understanding in industry and research - Includes coverage of MBE as mass production epitaxial technology and how it enhances processing efficiency and throughput for the semiconductor industry and nanostructured semiconductor materials research community
Book Synopsis Group IV Semiconductor Nanostructures - 2006: Volume 958 by : Leonid Tsybeskov
Download or read book Group IV Semiconductor Nanostructures - 2006: Volume 958 written by Leonid Tsybeskov and published by . This book was released on 2007-03-28 with total page 336 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book focuses on advances in materials science and device applications of nanostructures composed of Si, Ge, diamond, SiGe and SiCGe. Continuous progress in the development of reproducibly grown quantum dots, wires and wells has produced a new class of functional materials and devices with characteristic dimensions less than 50nm. The broad spectrum of these devices ranges from commercially offered high-mobility transistors using strained Si to exploratory SiGe nanostructures for integrated optical interconnects and THz lasers. This book brings together researchers from chemistry, physics, biology, materials science and engineering to share and discuss both the challenges and progress towards a new generation of Si(SiGe, SiCGe)-based novel functional structures and devices. Topics include: light emission and photonic devices; Ge, SiGe and diamond nanostructures; strains, Si/Ge films and layers and Si nanocrystals.
Book Synopsis Group-IV Semiconductor Nanostructures: Volume 832 by : Materials Research Society. Meeting
Download or read book Group-IV Semiconductor Nanostructures: Volume 832 written by Materials Research Society. Meeting and published by . This book was released on 2005-05-24 with total page 440 pages. Available in PDF, EPUB and Kindle. Book excerpt: Broad interest and steady progress in the area of Group-IV (Si:Ge:C) semiconductor nanostructures, including quantum dots, wires and wells, has produced a new class of functional materials and devices with characteristic dimensions less than 50nm. This volume brings together scientists from different disciplines to discuss fabrication and characterization techniques and optical and transport properties, as well as applications of Group-IV semiconductor nanostructures. Fields such as photonic systems, nanocrystal memories, light-emitting and THz devices, nanowire-based interconnections and transistors are addressed. Topics include: nanoscale silicon-based photonic systems; Si/SiGe/SiN heterostructures and devices; Si/SiGe quantum cascade laser for terahertz; three-dimensional Si/SiGe nanostructures; Si nanocrystals and porous Si- light-emitting properties; Si nanocrystals and porous Si - other properties; Group-IV semiconductor nanowires; and rare-earth-doped Group-IV semiconductor nanostructures.
Book Synopsis Silicon Nanocrystals by : Lorenzo Pavesi
Download or read book Silicon Nanocrystals written by Lorenzo Pavesi and published by John Wiley & Sons. This book was released on 2010-02-02 with total page 648 pages. Available in PDF, EPUB and Kindle. Book excerpt: This unique collection of knowledge represents a comprehensive treatment of the fundamental and practical consequences of size reduction in silicon crystals. This clearly structured reference introduces readers to the optical, electrical and thermal properties of silicon nanocrystals that arise from their greatly reduced dimensions. It covers their synthesis and characterization from both chemical and physical viewpoints, including ion implantation, colloidal synthesis and vapor deposition methods. A major part of the text is devoted to applications in microelectronics as well as photonics and nanobiotechnology, making this of great interest to the high-tech industry.
Book Synopsis Journal of Nano Research Vol. 17 by : Graeme E. Murch
Download or read book Journal of Nano Research Vol. 17 written by Graeme E. Murch and published by Trans Tech Publications Ltd. This book was released on 2012-02-03 with total page 242 pages. Available in PDF, EPUB and Kindle. Book excerpt: This periodical edition includes peer-reviewed scientific and engineering papers on all aspects of research in the area of nanoscience and nanotechnologies and wide practical application of the achieved results.
Author :Sergeĭ Vasilʹevich Svechnikov Publisher :SPIE-International Society for Optical Engineering ISBN 13 : Total Pages :244 pages Book Rating :4.3/5 (91 download)
Book Synopsis Selected Papers on Optics and Photonics by : Sergeĭ Vasilʹevich Svechnikov
Download or read book Selected Papers on Optics and Photonics written by Sergeĭ Vasilʹevich Svechnikov and published by SPIE-International Society for Optical Engineering. This book was released on 2003 with total page 244 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Nanowires written by Simas Rackauskas and published by BoD – Books on Demand. This book was released on 2019-04-10 with total page 122 pages. Available in PDF, EPUB and Kindle. Book excerpt: Nanowires are attracting wide scientific interest due to the unique properties associated with their one-dimensional geometry. Developments in the understanding of the fundamental principles of the nanowire growth mechanisms and mastering functionalization provide tools to control crystal structure, morphology, and the interactions at the material interface, and create characteristics that are superior to those of planar geometries. This book provides a comprehensive overview of the most important developments in the field of nanowires, starting from their synthesis, discussing properties, and finalizing with nanowire applications. The book consists of two parts: the first is devoted to the synthesis of nanowires and characterization, and the second investigates the properties of nanowires and their applications in future devices.