Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Stochastic Differential Equations And Their Numerical Approximations
Download Stochastic Differential Equations And Their Numerical Approximations full books in PDF, epub, and Kindle. Read online Stochastic Differential Equations And Their Numerical Approximations ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis Numerical Solution of Stochastic Differential Equations by : Peter E. Kloeden
Download or read book Numerical Solution of Stochastic Differential Equations written by Peter E. Kloeden and published by Springer Science & Business Media. This book was released on 2013-04-17 with total page 666 pages. Available in PDF, EPUB and Kindle. Book excerpt: The numerical analysis of stochastic differential equations (SDEs) differs significantly from that of ordinary differential equations. This book provides an easily accessible introduction to SDEs, their applications and the numerical methods to solve such equations. From the reviews: "The authors draw upon their own research and experiences in obviously many disciplines... considerable time has obviously been spent writing this in the simplest language possible." --ZAMP
Book Synopsis Applied Stochastic Differential Equations by : Simo Särkkä
Download or read book Applied Stochastic Differential Equations written by Simo Särkkä and published by Cambridge University Press. This book was released on 2019-05-02 with total page 327 pages. Available in PDF, EPUB and Kindle. Book excerpt: With this hands-on introduction readers will learn what SDEs are all about and how they should use them in practice.
Book Synopsis Numerical Integration of Stochastic Differential Equations by : G.N. Milstein
Download or read book Numerical Integration of Stochastic Differential Equations written by G.N. Milstein and published by Springer Science & Business Media. This book was released on 2013-03-09 with total page 178 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is devoted to mean-square and weak approximations of solutions of stochastic differential equations (SDE). These approximations represent two fundamental aspects in the contemporary theory of SDE. Firstly, the construction of numerical methods for such systems is important as the solutions provided serve as characteristics for a number of mathematical physics problems. Secondly, the employment of probability representations together with a Monte Carlo method allows us to reduce the solution of complex multidimensional problems of mathematical physics to the integration of stochastic equations. Along with a general theory of numerical integrations of such systems, both in the mean-square and the weak sense, a number of concrete and sufficiently constructive numerical schemes are considered. Various applications and particularly the approximate calculation of Wiener integrals are also dealt with. This book is of interest to graduate students in the mathematical, physical and engineering sciences, and to specialists whose work involves differential equations, mathematical physics, numerical mathematics, the theory of random processes, estimation and control theory.
Book Synopsis Random Ordinary Differential Equations and Their Numerical Solution by : Xiaoying Han
Download or read book Random Ordinary Differential Equations and Their Numerical Solution written by Xiaoying Han and published by Springer. This book was released on 2017-10-25 with total page 252 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is intended to make recent results on the derivation of higher order numerical schemes for random ordinary differential equations (RODEs) available to a broader readership, and to familiarize readers with RODEs themselves as well as the closely associated theory of random dynamical systems. In addition, it demonstrates how RODEs are being used in the biological sciences, where non-Gaussian and bounded noise are often more realistic than the Gaussian white noise in stochastic differential equations (SODEs). RODEs are used in many important applications and play a fundamental role in the theory of random dynamical systems. They can be analyzed pathwise with deterministic calculus, but require further treatment beyond that of classical ODE theory due to the lack of smoothness in their time variable. Although classical numerical schemes for ODEs can be used pathwise for RODEs, they rarely attain their traditional order since the solutions of RODEs do not have sufficient smoothness to have Taylor expansions in the usual sense. However, Taylor-like expansions can be derived for RODEs using an iterated application of the appropriate chain rule in integral form, and represent the starting point for the systematic derivation of consistent higher order numerical schemes for RODEs. The book is directed at a wide range of readers in applied and computational mathematics and related areas as well as readers who are interested in the applications of mathematical models involving random effects, in particular in the biological sciences.The level of this book is suitable for graduate students in applied mathematics and related areas, computational sciences and systems biology. A basic knowledge of ordinary differential equations and numerical analysis is required.
Book Synopsis Backward Stochastic Differential Equations by : N El Karoui
Download or read book Backward Stochastic Differential Equations written by N El Karoui and published by CRC Press. This book was released on 1997-01-17 with total page 236 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents the texts of seminars presented during the years 1995 and 1996 at the Université Paris VI and is the first attempt to present a survey on this subject. Starting from the classical conditions for existence and unicity of a solution in the most simple case-which requires more than basic stochartic calculus-several refinements on the hypotheses are introduced to obtain more general results.
Book Synopsis Stochastic Differential Equations and Their Numerical Approximations by : Liying Huang
Download or read book Stochastic Differential Equations and Their Numerical Approximations written by Liying Huang and published by . This book was released on 1995 with total page 194 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis Taylor Approximations for Stochastic Partial Differential Equations by : Arnulf Jentzen
Download or read book Taylor Approximations for Stochastic Partial Differential Equations written by Arnulf Jentzen and published by SIAM. This book was released on 2011-12-08 with total page 224 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents a systematic theory of Taylor expansions of evolutionary-type stochastic partial differential equations (SPDEs). The authors show how Taylor expansions can be used to derive higher order numerical methods for SPDEs, with a focus on pathwise and strong convergence. In the case of multiplicative noise, the driving noise process is assumed to be a cylindrical Wiener process, while in the case of additive noise the SPDE is assumed to be driven by an arbitrary stochastic process with H?lder continuous sample paths. Recent developments on numerical methods for random and stochastic ordinary differential equations are also included since these are relevant for solving spatially discretised SPDEs as well as of interest in their own right. The authors include the proof of an existence and uniqueness theorem under general assumptions on the coefficients as well as regularity estimates in an appendix.
Book Synopsis Numerical Solution of SDE Through Computer Experiments by : Peter Eris Kloeden
Download or read book Numerical Solution of SDE Through Computer Experiments written by Peter Eris Kloeden and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 304 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides an easily accessible, computationally-oriented introduction into the numerical solution of stochastic differential equations using computer experiments. It develops in the reader an ability to apply numerical methods solving stochastic differential equations. It also creates an intuitive understanding of the necessary theoretical background. Software containing programs for over 100 problems is available online.
Book Synopsis An Introduction to Stochastic Differential Equations by : Lawrence C. Evans
Download or read book An Introduction to Stochastic Differential Equations written by Lawrence C. Evans and published by American Mathematical Soc.. This book was released on 2012-12-11 with total page 161 pages. Available in PDF, EPUB and Kindle. Book excerpt: These notes provide a concise introduction to stochastic differential equations and their application to the study of financial markets and as a basis for modeling diverse physical phenomena. They are accessible to non-specialists and make a valuable addition to the collection of texts on the topic. --Srinivasa Varadhan, New York University This is a handy and very useful text for studying stochastic differential equations. There is enough mathematical detail so that the reader can benefit from this introduction with only a basic background in mathematical analysis and probability. --George Papanicolaou, Stanford University This book covers the most important elementary facts regarding stochastic differential equations; it also describes some of the applications to partial differential equations, optimal stopping, and options pricing. The book's style is intuitive rather than formal, and emphasis is made on clarity. This book will be very helpful to starting graduate students and strong undergraduates as well as to others who want to gain knowledge of stochastic differential equations. I recommend this book enthusiastically. --Alexander Lipton, Mathematical Finance Executive, Bank of America Merrill Lynch This short book provides a quick, but very readable introduction to stochastic differential equations, that is, to differential equations subject to additive ``white noise'' and related random disturbances. The exposition is concise and strongly focused upon the interplay between probabilistic intuition and mathematical rigor. Topics include a quick survey of measure theoretic probability theory, followed by an introduction to Brownian motion and the Ito stochastic calculus, and finally the theory of stochastic differential equations. The text also includes applications to partial differential equations, optimal stopping problems and options pricing. This book can be used as a text for senior undergraduates or beginning graduate students in mathematics, applied mathematics, physics, financial mathematics, etc., who want to learn the basics of stochastic differential equations. The reader is assumed to be fairly familiar with measure theoretic mathematical analysis, but is not assumed to have any particular knowledge of probability theory (which is rapidly developed in Chapter 2 of the book).
Book Synopsis Numerical Methods for Stochastic Partial Differential Equations with White Noise by : Zhongqiang Zhang
Download or read book Numerical Methods for Stochastic Partial Differential Equations with White Noise written by Zhongqiang Zhang and published by Springer. This book was released on 2017-09-01 with total page 391 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book covers numerical methods for stochastic partial differential equations with white noise using the framework of Wong-Zakai approximation. The book begins with some motivational and background material in the introductory chapters and is divided into three parts. Part I covers numerical stochastic ordinary differential equations. Here the authors start with numerical methods for SDEs with delay using the Wong-Zakai approximation and finite difference in time. Part II covers temporal white noise. Here the authors consider SPDEs as PDEs driven by white noise, where discretization of white noise (Brownian motion) leads to PDEs with smooth noise, which can then be treated by numerical methods for PDEs. In this part, recursive algorithms based on Wiener chaos expansion and stochastic collocation methods are presented for linear stochastic advection-diffusion-reaction equations. In addition, stochastic Euler equations are exploited as an application of stochastic collocation methods, where a numerical comparison with other integration methods in random space is made. Part III covers spatial white noise. Here the authors discuss numerical methods for nonlinear elliptic equations as well as other equations with additive noise. Numerical methods for SPDEs with multiplicative noise are also discussed using the Wiener chaos expansion method. In addition, some SPDEs driven by non-Gaussian white noise are discussed and some model reduction methods (based on Wick-Malliavin calculus) are presented for generalized polynomial chaos expansion methods. Powerful techniques are provided for solving stochastic partial differential equations. This book can be considered as self-contained. Necessary background knowledge is presented in the appendices. Basic knowledge of probability theory and stochastic calculus is presented in Appendix A. In Appendix B some semi-analytical methods for SPDEs are presented. In Appendix C an introduction to Gauss quadrature is provided. In Appendix D, all the conclusions which are needed for proofs are presented, and in Appendix E a method to compute the convergence rate empirically is included. In addition, the authors provide a thorough review of the topics, both theoretical and computational exercises in the book with practical discussion of the effectiveness of the methods. Supporting Matlab files are made available to help illustrate some of the concepts further. Bibliographic notes are included at the end of each chapter. This book serves as a reference for graduate students and researchers in the mathematical sciences who would like to understand state-of-the-art numerical methods for stochastic partial differential equations with white noise.
Book Synopsis Forward-Backward Stochastic Differential Equations and their Applications by : Jin Ma
Download or read book Forward-Backward Stochastic Differential Equations and their Applications written by Jin Ma and published by Springer. This book was released on 2007-04-24 with total page 285 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume is a survey/monograph on the recently developed theory of forward-backward stochastic differential equations (FBSDEs). Basic techniques such as the method of optimal control, the 'Four Step Scheme', and the method of continuation are presented in full. Related topics such as backward stochastic PDEs and many applications of FBSDEs are also discussed in detail. The volume is suitable for readers with basic knowledge of stochastic differential equations, and some exposure to the stochastic control theory and PDEs. It can be used for researchers and/or senior graduate students in the areas of probability, control theory, mathematical finance, and other related fields.
Book Synopsis Proceedings of the Conference on Applied Mathematics and Scientific Computing by : Zlatko Drmac
Download or read book Proceedings of the Conference on Applied Mathematics and Scientific Computing written by Zlatko Drmac and published by Springer Science & Business Media. This book was released on 2005-12-05 with total page 347 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book brings together contributed papers presenting new results covering different areas of applied mathematics and scientific computing. Firstly, four invited lectures give state-of-the-art presentations in the fields of numerical linear algebra, shape preserving approximation and singular perturbation theory. Then an overview of numerical solutions to skew-Hamiltonian and Hamiltonian eigenvalue problems in system and control theory is given by Benner, Kressner and Mehrmann. The important issue of structure preserving algorithms and structured condition numbers is discussed. Costantini and Sampoli review the basic ideas of the abstract schemes and show that they can be used to solve any problem concerning the construction of spline curves subject to local constraints. Kvasov presents a novel approach in solving the problem of shape preserving spline interpolation. Formulating this problem as a differential multipoint boundary value problem for hyperbolic and biharmonic tension splines he considers its finite difference approximation. Miller and Shishkin consider the Black-Scholes equation that, for some values of the parameters, may be a singularly perturbed problem. They construct a new numerical method, on an appropriately fitted piecewise-uniform mesh, which is parameter-uniformly convergent.
Book Synopsis Numerical Approximations of Stochastic Differential Equations with Non-Globally Lipschitz Continuous Coefficients by : Martin Hutzenthaler
Download or read book Numerical Approximations of Stochastic Differential Equations with Non-Globally Lipschitz Continuous Coefficients written by Martin Hutzenthaler and published by American Mathematical Soc.. This book was released on 2015-06-26 with total page 112 pages. Available in PDF, EPUB and Kindle. Book excerpt: Many stochastic differential equations (SDEs) in the literature have a superlinearly growing nonlinearity in their drift or diffusion coefficient. Unfortunately, moments of the computationally efficient Euler-Maruyama approximation method diverge for these SDEs in finite time. This article develops a general theory based on rare events for studying integrability properties such as moment bounds for discrete-time stochastic processes. Using this approach, the authors establish moment bounds for fully and partially drift-implicit Euler methods and for a class of new explicit approximation methods which require only a few more arithmetical operations than the Euler-Maruyama method. These moment bounds are then used to prove strong convergence of the proposed schemes. Finally, the authors illustrate their results for several SDEs from finance, physics, biology and chemistry.
Book Synopsis Stochastic Flows and Stochastic Differential Equations by : Hiroshi Kunita
Download or read book Stochastic Flows and Stochastic Differential Equations written by Hiroshi Kunita and published by Cambridge University Press. This book was released on 1990 with total page 364 pages. Available in PDF, EPUB and Kindle. Book excerpt: The main purpose of this book is to give a systematic treatment of the theory of stochastic differential equations and stochastic flow of diffeomorphisms, and through the former to study the properties of stochastic flows.The classical theory was initiated by K. Itô and since then has been much developed. Professor Kunita's approach here is to regard the stochastic differential equation as a dynamical system driven by a random vector field, including thereby Itô's theory as a special case. The book can be used with advanced courses on probability theory or for self-study.
Book Synopsis Stochastic Differential Equations by : Bernt Oksendal
Download or read book Stochastic Differential Equations written by Bernt Oksendal and published by Springer Science & Business Media. This book was released on 2013-03-09 with total page 218 pages. Available in PDF, EPUB and Kindle. Book excerpt: These notes are based on a postgraduate course I gave on stochastic differential equations at Edinburgh University in the spring 1982. No previous knowledge about the subject was assumed, but the presen tation is based on some background in measure theory. There are several reasons why one should learn more about stochastic differential equations: They have a wide range of applica tions outside mathematics, there are many fruitful connections to other mathematical disciplines and the subject has a rapidly develop ing life of its own as a fascinating research field with many interesting unanswered questions. Unfortunately most of the literature about stochastic differential equations seems to place so much emphasis on rigor and complete ness that is scares many nonexperts away. These notes are an attempt to approach the subject from the nonexpert point of view: Not knowing anything (except rumours, maybe) about a subject to start with, what would I like to know first of all? My answer would be: 1) In what situations does the subject arise? 2) What are its essential features? 3) What are the applications and the connections to other fields? I would not be so interested in the proof of the most general case, but rather in an easier proof of a special case, which may give just as much of the basic idea in the argument. And I would be willing to believe some basic results without proof (at first stage, anyway) in order to have time for some more basic applications.
Book Synopsis Stochastic Differential Equations by : Peter H. Baxendale
Download or read book Stochastic Differential Equations written by Peter H. Baxendale and published by World Scientific. This book was released on 2007 with total page 416 pages. Available in PDF, EPUB and Kindle. Book excerpt: The first paper in the volume, Stochastic Evolution Equations by N V Krylov and B L Rozovskii, was originally published in Russian in 1979. After more than a quarter-century, this paper remains a standard reference in the field of stochastic partial differential equations (SPDEs) and continues to attract attention of mathematicians of all generations, because, together with a short but thorough introduction to SPDEs, it presents a number of optimal and essentially non-improvable results about solvability for a large class of both linear and non-linear equations.
Book Synopsis Stochastic Differential Equations with Markovian Switching by : Xuerong Mao
Download or read book Stochastic Differential Equations with Markovian Switching written by Xuerong Mao and published by Imperial College Press. This book was released on 2006 with total page 430 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook provides the first systematic presentation of the theory of stochastic differential equations with Markovian switching. It presents the basic principles at an introductory level but emphasizes current advanced level research trends. The material takes into account all the features of Ito equations, Markovian switching, interval systems and time-lag. The theory developed is applicable in different and complicated situations in many branches of science and industry.