Stochastic Analysis in Discrete and Continuous Settings

Download Stochastic Analysis in Discrete and Continuous Settings PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3642023800
Total Pages : 322 pages
Book Rating : 4.6/5 (42 download)

DOWNLOAD NOW!


Book Synopsis Stochastic Analysis in Discrete and Continuous Settings by : Nicolas Privault

Download or read book Stochastic Analysis in Discrete and Continuous Settings written by Nicolas Privault and published by Springer. This book was released on 2009-07-14 with total page 322 pages. Available in PDF, EPUB and Kindle. Book excerpt: This monograph is an introduction to some aspects of stochastic analysis in the framework of normal martingales, in both discrete and continuous time. The text is mostly self-contained, except for Section 5.7 that requires some background in geometry, and should be accessible to graduate students and researchers having already received a basic training in probability. Prereq- sites are mostly limited to a knowledge of measure theory and probability, namely?-algebras,expectations,andconditionalexpectations.Ashortint- duction to stochastic calculus for continuous and jump processes is given in Chapter 2 using normal martingales, whose predictable quadratic variation is the Lebesgue measure. There already exists several books devoted to stochastic analysis for c- tinuous di?usion processes on Gaussian and Wiener spaces, cf. e.g. [51], [63], [65], [72], [83], [84], [92], [128], [134], [143], [146], [147]. The particular f- ture of this text is to simultaneously consider continuous processes and jump processes in the uni?ed framework of normal martingales.

Stochastic Analysis In Discrete And Continuous Settings

Download Stochastic Analysis In Discrete And Continuous Settings PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 9783642023811
Total Pages : 321 pages
Book Rating : 4.0/5 (238 download)

DOWNLOAD NOW!


Book Synopsis Stochastic Analysis In Discrete And Continuous Settings by :

Download or read book Stochastic Analysis In Discrete And Continuous Settings written by and published by Springer. This book was released on 2009 with total page 321 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Stochastic Control in Discrete and Continuous Time

Download Stochastic Control in Discrete and Continuous Time PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 0387766162
Total Pages : 299 pages
Book Rating : 4.3/5 (877 download)

DOWNLOAD NOW!


Book Synopsis Stochastic Control in Discrete and Continuous Time by : Atle Seierstad

Download or read book Stochastic Control in Discrete and Continuous Time written by Atle Seierstad and published by Springer Science & Business Media. This book was released on 2008-11-11 with total page 299 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book contains an introduction to three topics in stochastic control: discrete time stochastic control, i. e. , stochastic dynamic programming (Chapter 1), piecewise - terministic control problems (Chapter 3), and control of Ito diffusions (Chapter 4). The chapters include treatments of optimal stopping problems. An Appendix - calls material from elementary probability theory and gives heuristic explanations of certain more advanced tools in probability theory. The book will hopefully be of interest to students in several ?elds: economics, engineering, operations research, ?nance, business, mathematics. In economics and business administration, graduate students should readily be able to read it, and the mathematical level can be suitable for advanced undergraduates in mathem- ics and science. The prerequisites for reading the book are only a calculus course and a course in elementary probability. (Certain technical comments may demand a slightly better background. ) As this book perhaps (and hopefully) will be read by readers with widely diff- ing backgrounds, some general advice may be useful: Don’t be put off if paragraphs, comments, or remarks contain material of a seemingly more technical nature that you don’t understand. Just skip such material and continue reading, it will surely not be needed in order to understand the main ideas and results. The presentation avoids the use of measure theory.

Stochastic Analysis and Related Topics

Download Stochastic Analysis and Related Topics PDF Online Free

Author :
Publisher : Birkhäuser
ISBN 13 : 3319596713
Total Pages : 224 pages
Book Rating : 4.3/5 (195 download)

DOWNLOAD NOW!


Book Synopsis Stochastic Analysis and Related Topics by : Fabrice Baudoin

Download or read book Stochastic Analysis and Related Topics written by Fabrice Baudoin and published by Birkhäuser. This book was released on 2017-10-04 with total page 224 pages. Available in PDF, EPUB and Kindle. Book excerpt: The articles in this collection are a sampling of some of the research presented during the conference “Stochastic Analysis and Related Topics”, held in May of 2015 at Purdue University in honor of the 60th birthday of Rodrigo Bañuelos. A wide variety of topics in probability theory is covered in these proceedings, including heat kernel estimates, Malliavin calculus, rough paths differential equations, Lévy processes, Brownian motion on manifolds, and spin glasses, among other topics.

Wiener Chaos: Moments, Cumulants and Diagrams

Download Wiener Chaos: Moments, Cumulants and Diagrams PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 8847016797
Total Pages : 281 pages
Book Rating : 4.8/5 (47 download)

DOWNLOAD NOW!


Book Synopsis Wiener Chaos: Moments, Cumulants and Diagrams by : Giovanni Peccati

Download or read book Wiener Chaos: Moments, Cumulants and Diagrams written by Giovanni Peccati and published by Springer Science & Business Media. This book was released on 2011-04-06 with total page 281 pages. Available in PDF, EPUB and Kindle. Book excerpt: The concept of Wiener chaos generalizes to an infinite-dimensional setting the properties of orthogonal polynomials associated with probability distributions on the real line. It plays a crucial role in modern probability theory, with applications ranging from Malliavin calculus to stochastic differential equations and from probabilistic approximations to mathematical finance. This book is concerned with combinatorial structures arising from the study of chaotic random variables related to infinitely divisible random measures. The combinatorial structures involved are those of partitions of finite sets, over which Möbius functions and related inversion formulae are defined. This combinatorial standpoint (which is originally due to Rota and Wallstrom) provides an ideal framework for diagrams, which are graphical devices used to compute moments and cumulants of random variables. Several applications are described, in particular, recent limit theorems for chaotic random variables. An Appendix presents a computer implementation in MATHEMATICA for many of the formulae.

An Introduction to Stochastic Modeling

Download An Introduction to Stochastic Modeling PDF Online Free

Author :
Publisher : Academic Press
ISBN 13 : 1483269272
Total Pages : 410 pages
Book Rating : 4.4/5 (832 download)

DOWNLOAD NOW!


Book Synopsis An Introduction to Stochastic Modeling by : Howard M. Taylor

Download or read book An Introduction to Stochastic Modeling written by Howard M. Taylor and published by Academic Press. This book was released on 2014-05-10 with total page 410 pages. Available in PDF, EPUB and Kindle. Book excerpt: An Introduction to Stochastic Modeling provides information pertinent to the standard concepts and methods of stochastic modeling. This book presents the rich diversity of applications of stochastic processes in the sciences. Organized into nine chapters, this book begins with an overview of diverse types of stochastic models, which predicts a set of possible outcomes weighed by their likelihoods or probabilities. This text then provides exercises in the applications of simple stochastic analysis to appropriate problems. Other chapters consider the study of general functions of independent, identically distributed, nonnegative random variables representing the successive intervals between renewals. This book discusses as well the numerous examples of Markov branching processes that arise naturally in various scientific disciplines. The final chapter deals with queueing models, which aid the design process by predicting system performance. This book is a valuable resource for students of engineering and management science. Engineers will also find this book useful.

Geometric Theory of Discrete Nonautonomous Dynamical Systems

Download Geometric Theory of Discrete Nonautonomous Dynamical Systems PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 3642142575
Total Pages : 422 pages
Book Rating : 4.6/5 (421 download)

DOWNLOAD NOW!


Book Synopsis Geometric Theory of Discrete Nonautonomous Dynamical Systems by : Christian Pötzsche

Download or read book Geometric Theory of Discrete Nonautonomous Dynamical Systems written by Christian Pötzsche and published by Springer Science & Business Media. This book was released on 2010-09-17 with total page 422 pages. Available in PDF, EPUB and Kindle. Book excerpt: The goal of this book is to provide an approach to the corresponding geometric theory of nonautonomous discrete dynamical systems in infinite-dimensional spaces by virtue of 2-parameter semigroups (processes).

Stochastic Calculus of Variations

Download Stochastic Calculus of Variations PDF Online Free

Author :
Publisher : Walter de Gruyter GmbH & Co KG
ISBN 13 : 3110378078
Total Pages : 290 pages
Book Rating : 4.1/5 (13 download)

DOWNLOAD NOW!


Book Synopsis Stochastic Calculus of Variations by : Yasushi Ishikawa

Download or read book Stochastic Calculus of Variations written by Yasushi Ishikawa and published by Walter de Gruyter GmbH & Co KG. This book was released on 2016-03-07 with total page 290 pages. Available in PDF, EPUB and Kindle. Book excerpt: This monograph is a concise introduction to the stochastic calculus of variations (also known as Malliavin calculus) for processes with jumps. It is written for researchers and graduate students who are interested in Malliavin calculus for jump processes. In this book "processes with jumps" includes both pure jump processes and jump-diffusions. The author provides many results on this topic in a self-contained way; this also applies to stochastic differential equations (SDEs) "with jumps". The book also contains some applications of the stochastic calculus for processes with jumps to the control theory and mathematical finance. Namely, asymptotic expansions functionals related with financial assets of jump-diffusion are provided based on the theory of asymptotic expansion on the Wiener–Poisson space. Solving the Hamilton–Jacobi–Bellman (HJB) equation of integro-differential type is related with solving the classical Merton problem and the Ramsey theory. The field of jump processes is nowadays quite wide-ranging, from the Lévy processes to SDEs with jumps. Recent developments in stochastic analysis have enabled us to express various results in a compact form. Up to now, these topics were rarely discussed in a monograph. Contents: Preface Preface to the second edition Introduction Lévy processes and Itô calculus Perturbations and properties of the probability law Analysis of Wiener–Poisson functionals Applications Appendix Bibliography List of symbols Index

Stochastic Analysis for Poisson Point Processes

Download Stochastic Analysis for Poisson Point Processes PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3319052330
Total Pages : 359 pages
Book Rating : 4.3/5 (19 download)

DOWNLOAD NOW!


Book Synopsis Stochastic Analysis for Poisson Point Processes by : Giovanni Peccati

Download or read book Stochastic Analysis for Poisson Point Processes written by Giovanni Peccati and published by Springer. This book was released on 2016-07-07 with total page 359 pages. Available in PDF, EPUB and Kindle. Book excerpt: Stochastic geometry is the branch of mathematics that studies geometric structures associated with random configurations, such as random graphs, tilings and mosaics. Due to its close ties with stereology and spatial statistics, the results in this area are relevant for a large number of important applications, e.g. to the mathematical modeling and statistical analysis of telecommunication networks, geostatistics and image analysis. In recent years – due mainly to the impetus of the authors and their collaborators – a powerful connection has been established between stochastic geometry and the Malliavin calculus of variations, which is a collection of probabilistic techniques based on the properties of infinite-dimensional differential operators. This has led in particular to the discovery of a large number of new quantitative limit theorems for high-dimensional geometric objects. This unique book presents an organic collection of authoritative surveys written by the principal actors in this rapidly evolving field, offering a rigorous yet lively presentation of its many facets.

Stochastic Analysis, Filtering, and Stochastic Optimization

Download Stochastic Analysis, Filtering, and Stochastic Optimization PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3030985199
Total Pages : 466 pages
Book Rating : 4.0/5 (39 download)

DOWNLOAD NOW!


Book Synopsis Stochastic Analysis, Filtering, and Stochastic Optimization by : George Yin

Download or read book Stochastic Analysis, Filtering, and Stochastic Optimization written by George Yin and published by Springer Nature. This book was released on 2022-04-22 with total page 466 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume is a collection of research works to honor the late Professor Mark H.A. Davis, whose pioneering work in the areas of Stochastic Processes, Filtering, and Stochastic Optimization spans more than five decades. Invited authors include his dissertation advisor, past collaborators, colleagues, mentees, and graduate students of Professor Davis, as well as scholars who have worked in the above areas. Their contributions may expand upon topics in piecewise deterministic processes, pathwise stochastic calculus, martingale methods in stochastic optimization, filtering, mean-field games, time-inconsistency, as well as impulse, singular, risk-sensitive and robust stochastic control.

Computation of Greeks Using the Discrete Malliavin Calculus and Binomial Tree

Download Computation of Greeks Using the Discrete Malliavin Calculus and Binomial Tree PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 9811910731
Total Pages : 113 pages
Book Rating : 4.8/5 (119 download)

DOWNLOAD NOW!


Book Synopsis Computation of Greeks Using the Discrete Malliavin Calculus and Binomial Tree by : Yoshifumi Muroi

Download or read book Computation of Greeks Using the Discrete Malliavin Calculus and Binomial Tree written by Yoshifumi Muroi and published by Springer Nature. This book was released on 2022-04-17 with total page 113 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents new computation schemes for the sensitivity of options using the binomial tree and introduces readers to the discrete Malliavin calculus. It also shows that applications of the discrete Malliavin calculus approach to the binomial tree model offer fundamental tools for computing Greeks. The binomial tree approach is one of the most popular methods in option pricing. Although it is a fairly traditional model for option pricing, it is still widely used in financial institutions since it is tractable and easy to understand. However, the book shows that the tree approach also offers a powerful tool for deriving the Greeks for options. Greeks are quantities that represent the sensitivities of the price of derivative securities with respect to changes in the underlying asset price or parameters. The Malliavin calculus, the stochastic methods of variations, is one of the most popular tools used to derive Greeks. However, it is also very difficult to understand for most students and practitioners because it is based on complex mathematics. To help readers more easily understand the Malliavin calculus, the book introduces the discrete Malliavin calculus, a theory of the functional for the Bernoulli random walk. The discrete Malliavin calculus is significantly easier to understand, because the functional space of the Bernoulli random walk is realized in a finite dimensional space. As such, it makes this valuable tool far more accessible for a broad readership.

Probability on Real Lie Algebras

Download Probability on Real Lie Algebras PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 110712865X
Total Pages : 303 pages
Book Rating : 4.1/5 (71 download)

DOWNLOAD NOW!


Book Synopsis Probability on Real Lie Algebras by : Uwe Franz

Download or read book Probability on Real Lie Algebras written by Uwe Franz and published by Cambridge University Press. This book was released on 2016-01-25 with total page 303 pages. Available in PDF, EPUB and Kindle. Book excerpt: This monograph is a progressive introduction to non-commutativity in probability theory, summarizing and synthesizing recent results about classical and quantum stochastic processes on Lie algebras. In the early chapters, focus is placed on concrete examples of the links between algebraic relations and the moments of probability distributions. The subsequent chapters are more advanced and deal with Wigner densities for non-commutative couples of random variables, non-commutative stochastic processes with independent increments (quantum Lévy processes), and the quantum Malliavin calculus. This book will appeal to advanced undergraduate and graduate students interested in the relations between algebra, probability, and quantum theory. It also addresses a more advanced audience by covering other topics related to non-commutativity in stochastic calculus, Lévy processes, and the Malliavin calculus.

Stochastic Processes, Finance And Control: A Festschrift In Honor Of Robert J Elliott

Download Stochastic Processes, Finance And Control: A Festschrift In Honor Of Robert J Elliott PDF Online Free

Author :
Publisher : World Scientific
ISBN 13 : 9814483915
Total Pages : 605 pages
Book Rating : 4.8/5 (144 download)

DOWNLOAD NOW!


Book Synopsis Stochastic Processes, Finance And Control: A Festschrift In Honor Of Robert J Elliott by : Samuel N Cohen

Download or read book Stochastic Processes, Finance And Control: A Festschrift In Honor Of Robert J Elliott written by Samuel N Cohen and published by World Scientific. This book was released on 2012-08-10 with total page 605 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book consists of a series of new, peer-reviewed papers in stochastic processes, analysis, filtering and control, with particular emphasis on mathematical finance, actuarial science and engineering. Paper contributors include colleagues, collaborators and former students of Robert Elliott, many of whom are world-leading experts and have made fundamental and significant contributions to these areas.This book provides new important insights and results by eminent researchers in the considered areas, which will be of interest to researchers and practitioners. The topics considered will be diverse in applications, and will provide contemporary approaches to the problems considered. The areas considered are rapidly evolving. This volume will contribute to their development, and present the current state-of-the-art stochastic processes, analysis, filtering and control.Contributing authors include: H Albrecher, T Bielecki, F Dufour, M Jeanblanc, I Karatzas, H-H Kuo, A Melnikov, E Platen, G Yin, Q Zhang, C Chiarella, W Fleming, D Madan, R Mamon, J Yan, V Krishnamurthy.

Topological Complexity of Smooth Random Functions

Download Topological Complexity of Smooth Random Functions PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 3642195792
Total Pages : 135 pages
Book Rating : 4.6/5 (421 download)

DOWNLOAD NOW!


Book Synopsis Topological Complexity of Smooth Random Functions by : Robert Adler

Download or read book Topological Complexity of Smooth Random Functions written by Robert Adler and published by Springer Science & Business Media. This book was released on 2011-05-18 with total page 135 pages. Available in PDF, EPUB and Kindle. Book excerpt: These notes, based on lectures delivered in Saint Flour, provide an easy introduction to the authors’ 2007 Springer monograph “Random Fields and Geometry.” While not as exhaustive as the full monograph, they are also less exhausting, while still covering the basic material, typically at a more intuitive and less technical level. They also cover some more recent material relating to random algebraic topology and statistical applications. The notes include an introduction to the general theory of Gaussian random fields, treating classical topics such as continuity and boundedness. This is followed by a quick review of geometry, both integral and Riemannian, with an emphasis on tube formulae, to provide the reader with the material needed to understand and use the Gaussian kinematic formula, the main result of the notes. This is followed by chapters on topological inference and random algebraic topology, both of which provide applications of the main results.

Topics in Algebraic and Topological K-Theory

Download Topics in Algebraic and Topological K-Theory PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3642157084
Total Pages : 322 pages
Book Rating : 4.6/5 (421 download)

DOWNLOAD NOW!


Book Synopsis Topics in Algebraic and Topological K-Theory by : Paul Frank Baum

Download or read book Topics in Algebraic and Topological K-Theory written by Paul Frank Baum and published by Springer. This book was released on 2010-10-28 with total page 322 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume is an introductory textbook to K-theory, both algebraic and topological, and to various current research topics within the field, including Kasparov's bivariant K-theory, the Baum-Connes conjecture, the comparison between algebraic and topological K-theory of topological algebras, the K-theory of schemes, and the theory of dg-categories.

Introduction to Stochastic Calculus with Applications

Download Introduction to Stochastic Calculus with Applications PDF Online Free

Author :
Publisher : Imperial College Press
ISBN 13 : 1860945554
Total Pages : 431 pages
Book Rating : 4.8/5 (69 download)

DOWNLOAD NOW!


Book Synopsis Introduction to Stochastic Calculus with Applications by : Fima C. Klebaner

Download or read book Introduction to Stochastic Calculus with Applications written by Fima C. Klebaner and published by Imperial College Press. This book was released on 2005 with total page 431 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents a concise treatment of stochastic calculus and its applications. It gives a simple but rigorous treatment of the subject including a range of advanced topics, it is useful for practitioners who use advanced theoretical results. It covers advanced applications, such as models in mathematical finance, biology and engineering.Self-contained and unified in presentation, the book contains many solved examples and exercises. It may be used as a textbook by advanced undergraduates and graduate students in stochastic calculus and financial mathematics. It is also suitable for practitioners who wish to gain an understanding or working knowledge of the subject. For mathematicians, this book could be a first text on stochastic calculus; it is good companion to more advanced texts by a way of examples and exercises. For people from other fields, it provides a way to gain a working knowledge of stochastic calculus. It shows all readers the applications of stochastic calculus methods and takes readers to the technical level required in research and sophisticated modelling.This second edition contains a new chapter on bonds, interest rates and their options. New materials include more worked out examples in all chapters, best estimators, more results on change of time, change of measure, random measures, new results on exotic options, FX options, stochastic and implied volatility, models of the age-dependent branching process and the stochastic Lotka-Volterra model in biology, non-linear filtering in engineering and five new figures.Instructors can obtain slides of the text from the author.

Computational Approach to Riemann Surfaces

Download Computational Approach to Riemann Surfaces PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3642174132
Total Pages : 268 pages
Book Rating : 4.6/5 (421 download)

DOWNLOAD NOW!


Book Synopsis Computational Approach to Riemann Surfaces by : Alexander I. Bobenko TU Berlin

Download or read book Computational Approach to Riemann Surfaces written by Alexander I. Bobenko TU Berlin and published by Springer. This book was released on 2011-02-03 with total page 268 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume offers a well-structured overview of existent computational approaches to Riemann surfaces and those currently in development. The authors of the contributions represent the groups providing publically available numerical codes in this field. Thus this volume illustrates which software tools are available and how they can be used in practice. In addition examples for solutions to partial differential equations and in surface theory are presented. The intended audience of this book is twofold. It can be used as a textbook for a graduate course in numerics of Riemann surfaces, in which case the standard undergraduate background, i.e., calculus and linear algebra, is required. In particular, no knowledge of the theory of Riemann surfaces is expected; the necessary background in this theory is contained in the Introduction chapter. At the same time, this book is also intended for specialists in geometry and mathematical physics applying the theory of Riemann surfaces in their research. It is the first book on numerics of Riemann surfaces that reflects the progress made in this field during the last decade, and it contains original results. There are a growing number of applications that involve the evaluation of concrete characteristics of models analytically described in terms of Riemann surfaces. Many problem settings and computations in this volume are motivated by such concrete applications in geometry and mathematical physics.