Data Clustering: Theory, Algorithms, and Applications, Second Edition

Download Data Clustering: Theory, Algorithms, and Applications, Second Edition PDF Online Free

Author :
Publisher : SIAM
ISBN 13 : 1611976332
Total Pages : 430 pages
Book Rating : 4.6/5 (119 download)

DOWNLOAD NOW!


Book Synopsis Data Clustering: Theory, Algorithms, and Applications, Second Edition by : Guojun Gan

Download or read book Data Clustering: Theory, Algorithms, and Applications, Second Edition written by Guojun Gan and published by SIAM. This book was released on 2020-11-10 with total page 430 pages. Available in PDF, EPUB and Kindle. Book excerpt: Data clustering, also known as cluster analysis, is an unsupervised process that divides a set of objects into homogeneous groups. Since the publication of the first edition of this monograph in 2007, development in the area has exploded, especially in clustering algorithms for big data and open-source software for cluster analysis. This second edition reflects these new developments, covers the basics of data clustering, includes a list of popular clustering algorithms, and provides program code that helps users implement clustering algorithms. Data Clustering: Theory, Algorithms and Applications, Second Edition will be of interest to researchers, practitioners, and data scientists as well as undergraduate and graduate students.

Exploratory Data Analysis with MATLAB

Download Exploratory Data Analysis with MATLAB PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1315349841
Total Pages : 589 pages
Book Rating : 4.3/5 (153 download)

DOWNLOAD NOW!


Book Synopsis Exploratory Data Analysis with MATLAB by : Wendy L. Martinez

Download or read book Exploratory Data Analysis with MATLAB written by Wendy L. Martinez and published by CRC Press. This book was released on 2017-08-07 with total page 589 pages. Available in PDF, EPUB and Kindle. Book excerpt: Praise for the Second Edition: "The authors present an intuitive and easy-to-read book. ... accompanied by many examples, proposed exercises, good references, and comprehensive appendices that initiate the reader unfamiliar with MATLAB." —Adolfo Alvarez Pinto, International Statistical Review "Practitioners of EDA who use MATLAB will want a copy of this book. ... The authors have done a great service by bringing together so many EDA routines, but their main accomplishment in this dynamic text is providing the understanding and tools to do EDA. —David A Huckaby, MAA Reviews Exploratory Data Analysis (EDA) is an important part of the data analysis process. The methods presented in this text are ones that should be in the toolkit of every data scientist. As computational sophistication has increased and data sets have grown in size and complexity, EDA has become an even more important process for visualizing and summarizing data before making assumptions to generate hypotheses and models. Exploratory Data Analysis with MATLAB, Third Edition presents EDA methods from a computational perspective and uses numerous examples and applications to show how the methods are used in practice. The authors use MATLAB code, pseudo-code, and algorithm descriptions to illustrate the concepts. The MATLAB code for examples, data sets, and the EDA Toolbox are available for download on the book’s website. New to the Third Edition Random projections and estimating local intrinsic dimensionality Deep learning autoencoders and stochastic neighbor embedding Minimum spanning tree and additional cluster validity indices Kernel density estimation Plots for visualizing data distributions, such as beanplots and violin plots A chapter on visualizing categorical data

Introduction to Pattern Recognition

Download Introduction to Pattern Recognition PDF Online Free

Author :
Publisher : Academic Press
ISBN 13 : 0080922759
Total Pages : 233 pages
Book Rating : 4.0/5 (89 download)

DOWNLOAD NOW!


Book Synopsis Introduction to Pattern Recognition by : Sergios Theodoridis

Download or read book Introduction to Pattern Recognition written by Sergios Theodoridis and published by Academic Press. This book was released on 2010-03-03 with total page 233 pages. Available in PDF, EPUB and Kindle. Book excerpt: Introduction to Pattern Recognition: A Matlab Approach is an accompanying manual to Theodoridis/Koutroumbas' Pattern Recognition. It includes Matlab code of the most common methods and algorithms in the book, together with a descriptive summary and solved examples, and including real-life data sets in imaging and audio recognition. This text is designed for electronic engineering, computer science, computer engineering, biomedical engineering and applied mathematics students taking graduate courses on pattern recognition and machine learning as well as R&D engineers and university researchers in image and signal processing/analyisis, and computer vision. - Matlab code and descriptive summary of the most common methods and algorithms in Theodoridis/Koutroumbas, Pattern Recognition, Fourth Edition - Solved examples in Matlab, including real-life data sets in imaging and audio recognition - Available separately or at a special package price with the main text (ISBN for package: 978-0-12-374491-3)

Clustering Algorithms

Download Clustering Algorithms PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 :
Total Pages : 374 pages
Book Rating : 4.3/5 (91 download)

DOWNLOAD NOW!


Book Synopsis Clustering Algorithms by : John A. Hartigan

Download or read book Clustering Algorithms written by John A. Hartigan and published by John Wiley & Sons. This book was released on 1975 with total page 374 pages. Available in PDF, EPUB and Kindle. Book excerpt: Shows how Galileo, Newton, and Einstein tried to explain gravity. Discusses the concept of microgravity and NASA's research on gravity and microgravity.

Statistics and Neural Networks

Download Statistics and Neural Networks PDF Online Free

Author :
Publisher : Oxford University Press, USA
ISBN 13 : 9780198524229
Total Pages : 290 pages
Book Rating : 4.5/5 (242 download)

DOWNLOAD NOW!


Book Synopsis Statistics and Neural Networks by : Jim W. Kay

Download or read book Statistics and Neural Networks written by Jim W. Kay and published by Oxford University Press, USA. This book was released on 1999 with total page 290 pages. Available in PDF, EPUB and Kindle. Book excerpt: Providing a broad overview of important current developments in the area of neural networks, this book highlights likely future trends.

MATLAB for Machine Learning

Download MATLAB for Machine Learning PDF Online Free

Author :
Publisher : Packt Publishing Ltd
ISBN 13 : 1788399390
Total Pages : 374 pages
Book Rating : 4.7/5 (883 download)

DOWNLOAD NOW!


Book Synopsis MATLAB for Machine Learning by : Giuseppe Ciaburro

Download or read book MATLAB for Machine Learning written by Giuseppe Ciaburro and published by Packt Publishing Ltd. This book was released on 2017-08-28 with total page 374 pages. Available in PDF, EPUB and Kindle. Book excerpt: Extract patterns and knowledge from your data in easy way using MATLAB About This Book Get your first steps into machine learning with the help of this easy-to-follow guide Learn regression, clustering, classification, predictive analytics, artificial neural networks and more with MATLAB Understand how your data works and identify hidden layers in the data with the power of machine learning. Who This Book Is For This book is for data analysts, data scientists, students, or anyone who is looking to get started with machine learning and want to build efficient data processing and predicting applications. A mathematical and statistical background will really help in following this book well. What You Will Learn Learn the introductory concepts of machine learning. Discover different ways to transform data using SAS XPORT, import and export tools, Explore the different types of regression techniques such as simple & multiple linear regression, ordinary least squares estimation, correlations and how to apply them to your data. Discover the basics of classification methods and how to implement Naive Bayes algorithm and Decision Trees in the Matlab environment. Uncover how to use clustering methods like hierarchical clustering to grouping data using the similarity measures. Know how to perform data fitting, pattern recognition, and clustering analysis with the help of MATLAB Neural Network Toolbox. Learn feature selection and extraction for dimensionality reduction leading to improved performance. In Detail MATLAB is the language of choice for many researchers and mathematics experts for machine learning. This book will help you build a foundation in machine learning using MATLAB for beginners. You'll start by getting your system ready with t he MATLAB environment for machine learning and you'll see how to easily interact with the Matlab workspace. We'll then move on to data cleansing, mining and analyzing various data types in machine learning and you'll see how to display data values on a plot. Next, you'll get to know about the different types of regression techniques and how to apply them to your data using the MATLAB functions. You'll understand the basic concepts of neural networks and perform data fitting, pattern recognition, and clustering analysis. Finally, you'll explore feature selection and extraction techniques for dimensionality reduction for performance improvement. At the end of the book, you will learn to put it all together into real-world cases covering major machine learning algorithms and be comfortable in performing machine learning with MATLAB. Style and approach The book takes a very comprehensive approach to enhance your understanding of machine learning using MATLAB. Sufficient real-world examples and use cases are included in the book to help you grasp the concepts quickly and apply them easily in your day-to-day work.

Statistical Pattern Recognition

Download Statistical Pattern Recognition PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 0470854782
Total Pages : 516 pages
Book Rating : 4.4/5 (78 download)

DOWNLOAD NOW!


Book Synopsis Statistical Pattern Recognition by : Andrew R. Webb

Download or read book Statistical Pattern Recognition written by Andrew R. Webb and published by John Wiley & Sons. This book was released on 2003-07-25 with total page 516 pages. Available in PDF, EPUB and Kindle. Book excerpt: Statistical pattern recognition is a very active area of study andresearch, which has seen many advances in recent years. New andemerging applications - such as data mining, web searching,multimedia data retrieval, face recognition, and cursivehandwriting recognition - require robust and efficient patternrecognition techniques. Statistical decision making and estimationare regarded as fundamental to the study of pattern recognition. Statistical Pattern Recognition, Second Edition has been fullyupdated with new methods, applications and references. It providesa comprehensive introduction to this vibrant area - with materialdrawn from engineering, statistics, computer science and the socialsciences - and covers many application areas, such as databasedesign, artificial neural networks, and decision supportsystems. * Provides a self-contained introduction to statistical patternrecognition. * Each technique described is illustrated by real examples. * Covers Bayesian methods, neural networks, support vectormachines, and unsupervised classification. * Each section concludes with a description of the applicationsthat have been addressed and with further developments of thetheory. * Includes background material on dissimilarity, parameterestimation, data, linear algebra and probability. * Features a variety of exercises, from 'open-book' questions tomore lengthy projects. The book is aimed primarily at senior undergraduate and graduatestudents studying statistical pattern recognition, patternprocessing, neural networks, and data mining, in both statisticsand engineering departments. It is also an excellent source ofreference for technical professionals working in advancedinformation development environments. For further information on the techniques and applicationsdiscussed in this book please visit ahref="http://www.statistical-pattern-recognition.net/"www.statistical-pattern-recognition.net/a

ARTIFICIAL INTELLIGENCE ALGORITHMS FOR UNSUPERVISED LEARNING: CLUSTERING AND PATTERN RECOGNITION WITH NEURAL NETWORKS. Examples with MATLAB

Download ARTIFICIAL INTELLIGENCE ALGORITHMS FOR UNSUPERVISED LEARNING: CLUSTERING AND PATTERN RECOGNITION WITH NEURAL NETWORKS. Examples with MATLAB PDF Online Free

Author :
Publisher : SCIENTIFIC BOOKS
ISBN 13 :
Total Pages : 200 pages
Book Rating : 4./5 ( download)

DOWNLOAD NOW!


Book Synopsis ARTIFICIAL INTELLIGENCE ALGORITHMS FOR UNSUPERVISED LEARNING: CLUSTERING AND PATTERN RECOGNITION WITH NEURAL NETWORKS. Examples with MATLAB by : CESAR PERZ LOPEZ

Download or read book ARTIFICIAL INTELLIGENCE ALGORITHMS FOR UNSUPERVISED LEARNING: CLUSTERING AND PATTERN RECOGNITION WITH NEURAL NETWORKS. Examples with MATLAB written by CESAR PERZ LOPEZ and published by SCIENTIFIC BOOKS. This book was released on with total page 200 pages. Available in PDF, EPUB and Kindle. Book excerpt: Artificial Intelligence combines mathematical algorithms and techniques from Machine Learning, Deep Learning and Big Data to extract the knowledge contained in the data and present it in an understandable and automatic way. Neural networks and their applications are a fundamental tool to develop work in Artificial Intelligence. On the other hand, unsupervised learning is more closely aligned with Artificial Intelligence as it gives the idea that a machine can learn to identify complex processes and patterns without the need for a human to provide guidance and supervision throughout the learning process. Some examples of unsupervised learning algorithms include clustering and association rules. In the case of this type of learning, there is no pre-training data set; the problem is approached blindly and only with logical operations to guide it. Although at first glance it seems impossible, it is about the ability to solve complex problems using only input data and logical algorithms. This avoids the use of reference data. Unsupervised learning algorithms are used to discover hidden patterns in unlabeled data. Unlike supervised learning algorithms, where there is prior knowledge of the desired answers, these algorithms do not have a set of ordered data. They are responsible for determining the most important common characteristics of a group of information and then grouping them according to their similarities. Among the most interesting models are the neural networks. MATLAB implementrs the Deep Learning Toolbox specialized in the techniques of analytics based on neural networks. Throughout this book the techniques of analytics for clustering and classification based on neural networks are developed using MATLAB software

Integrative Cluster Analysis in Bioinformatics

Download Integrative Cluster Analysis in Bioinformatics PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 1118906535
Total Pages : 451 pages
Book Rating : 4.1/5 (189 download)

DOWNLOAD NOW!


Book Synopsis Integrative Cluster Analysis in Bioinformatics by : Basel Abu-Jamous

Download or read book Integrative Cluster Analysis in Bioinformatics written by Basel Abu-Jamous and published by John Wiley & Sons. This book was released on 2015-06-15 with total page 451 pages. Available in PDF, EPUB and Kindle. Book excerpt: Clustering techniques are increasingly being put to use in the analysis of high-throughput biological datasets. Novel computational techniques to analyse high throughput data in the form of sequences, gene and protein expressions, pathways, and images are becoming vital for understanding diseases and future drug discovery. This book details the complete pathway of cluster analysis, from the basics of molecular biology to the generation of biological knowledge. The book also presents the latest clustering methods and clustering validation, thereby offering the reader a comprehensive review of clustering analysis in bioinformatics from the fundamentals through to state-of-the-art techniques and applications. Key Features: Offers a contemporary review of clustering methods and applications in the field of bioinformatics, with particular emphasis on gene expression analysis Provides an excellent introduction to molecular biology with computer scientists and information engineering researchers in mind, laying out the basic biological knowledge behind the application of clustering analysis techniques in bioinformatics Explains the structure and properties of many types of high-throughput datasets commonly found in biological studies Discusses how clustering methods and their possible successors would be used to enhance the pace of biological discoveries in the future Includes a companion website hosting a selected collection of codes and links to publicly available datasets

Data Analysis, Classification and the Forward Search

Download Data Analysis, Classification and the Forward Search PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 3540359788
Total Pages : 420 pages
Book Rating : 4.5/5 (43 download)

DOWNLOAD NOW!


Book Synopsis Data Analysis, Classification and the Forward Search by : Sergio Zani

Download or read book Data Analysis, Classification and the Forward Search written by Sergio Zani and published by Springer Science & Business Media. This book was released on 2007-08-06 with total page 420 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents new developments in data analysis, classification and multivariate statistics, and in their algorithmic implementation. The volume offers contributions to the theory of clustering and discrimination, multidimensional data analysis, data mining, and robust statistics with a special emphasis on the novel Forward Search approach. Many papers provide significant insight in a wide range of fields of application. Customer satisfaction and service evaluation are two examples of such emerging fields.

Cluster Analysis for Data Mining and System Identification

Download Cluster Analysis for Data Mining and System Identification PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 3764379871
Total Pages : 317 pages
Book Rating : 4.7/5 (643 download)

DOWNLOAD NOW!


Book Synopsis Cluster Analysis for Data Mining and System Identification by : János Abonyi

Download or read book Cluster Analysis for Data Mining and System Identification written by János Abonyi and published by Springer Science & Business Media. This book was released on 2007-06-22 with total page 317 pages. Available in PDF, EPUB and Kindle. Book excerpt: The aim of this book is to illustrate that advanced fuzzy clustering algorithms can be used not only for partitioning of the data. It can also be used for visualization, regression, classification and time-series analysis, hence fuzzy cluster analysis is a good approach to solve complex data mining and system identification problems. This book is oriented to undergraduate and postgraduate and is well suited for teaching purposes.

Intelligent Data Engineering and Automated Learning -- IDEAL 2010

Download Intelligent Data Engineering and Automated Learning -- IDEAL 2010 PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 364215381X
Total Pages : 411 pages
Book Rating : 4.6/5 (421 download)

DOWNLOAD NOW!


Book Synopsis Intelligent Data Engineering and Automated Learning -- IDEAL 2010 by : Colin Fyfe

Download or read book Intelligent Data Engineering and Automated Learning -- IDEAL 2010 written by Colin Fyfe and published by Springer. This book was released on 2010-08-21 with total page 411 pages. Available in PDF, EPUB and Kindle. Book excerpt: The IDEAL conference has become a unique, established and broad interdisciplinary forum for experts, researchers and practitioners in many fields to interact with each other and with leading academics and industries in the areas of machine learning, information processing, data mining, knowledge management, bio-informatics, neu- informatics, bio-inspired models, agents and distributed systems, and hybrid systems. This volume contains the papers presented at the 11th International Conference on Intelligent Data Engineering and Automated Learning (IDEAL 2010), which was held September 1–3, 2010 in the University of the West of Scotland, on its Paisley campus, 15 kilometres from the city of Glasgow, Scotland. All submissions were strictly pe- reviewed by the Programme Committee and only the papers judged with sufficient quality and novelty were accepted and included in the proceedings. The IDEAL conferences continue to evolve and this year’s conference was no exc- tion. The conference papers cover a wide variety of topics which can be classified by technique, aim or application. The techniques include evolutionary algorithms, artificial neural networks, association rules, probabilistic modelling, agent modelling, particle swarm optimization and kernel methods. The aims include regression, classification, clustering and generic data mining. The applications include biological information processing, text processing, physical systems control, video analysis and time series analysis.

Computational and Statistical Methods for Analysing Big Data with Applications

Download Computational and Statistical Methods for Analysing Big Data with Applications PDF Online Free

Author :
Publisher : Academic Press
ISBN 13 : 0081006519
Total Pages : 208 pages
Book Rating : 4.0/5 (81 download)

DOWNLOAD NOW!


Book Synopsis Computational and Statistical Methods for Analysing Big Data with Applications by : Shen Liu

Download or read book Computational and Statistical Methods for Analysing Big Data with Applications written by Shen Liu and published by Academic Press. This book was released on 2015-11-20 with total page 208 pages. Available in PDF, EPUB and Kindle. Book excerpt: Due to the scale and complexity of data sets currently being collected in areas such as health, transportation, environmental science, engineering, information technology, business and finance, modern quantitative analysts are seeking improved and appropriate computational and statistical methods to explore, model and draw inferences from big data. This book aims to introduce suitable approaches for such endeavours, providing applications and case studies for the purpose of demonstration. Computational and Statistical Methods for Analysing Big Data with Applications starts with an overview of the era of big data. It then goes onto explain the computational and statistical methods which have been commonly applied in the big data revolution. For each of these methods, an example is provided as a guide to its application. Five case studies are presented next, focusing on computer vision with massive training data, spatial data analysis, advanced experimental design methods for big data, big data in clinical medicine, and analysing data collected from mobile devices, respectively. The book concludes with some final thoughts and suggested areas for future research in big data. - Advanced computational and statistical methodologies for analysing big data are developed - Experimental design methodologies are described and implemented to make the analysis of big data more computationally tractable - Case studies are discussed to demonstrate the implementation of the developed methods - Five high-impact areas of application are studied: computer vision, geosciences, commerce, healthcare and transportation - Computing code/programs are provided where appropriate

Data Clustering in C++

Download Data Clustering in C++ PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1439862249
Total Pages : 520 pages
Book Rating : 4.4/5 (398 download)

DOWNLOAD NOW!


Book Synopsis Data Clustering in C++ by : Guojun Gan

Download or read book Data Clustering in C++ written by Guojun Gan and published by CRC Press. This book was released on 2011-03-28 with total page 520 pages. Available in PDF, EPUB and Kindle. Book excerpt: Data clustering is a highly interdisciplinary field, the goal of which is to divide a set of objects into homogeneous groups such that objects in the same group are similar and objects in different groups are quite distinct. Thousands of theoretical papers and a number of books on data clustering have been published over the past 50 years. However,

Image Processing and Pattern Recognition Based on Parallel Shift Technology

Download Image Processing and Pattern Recognition Based on Parallel Shift Technology PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1351778560
Total Pages : 276 pages
Book Rating : 4.3/5 (517 download)

DOWNLOAD NOW!


Book Synopsis Image Processing and Pattern Recognition Based on Parallel Shift Technology by : Stepan Bilan

Download or read book Image Processing and Pattern Recognition Based on Parallel Shift Technology written by Stepan Bilan and published by CRC Press. This book was released on 2018-01-29 with total page 276 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book describes the methods and algorithms for image pre-processing and recognition. These methods are based on a parallel shift technology of the imaging copy, as well as simple mathematical operations to allow the generation of a minimum set of features to describe and recognize the image. This book also describes the theoretical foundations of parallel shift technology and pattern recognition. Based on these methods and theories, this book is intended to help researchers with artificial intelligence systems design, robotics, and developing software and hardware applications.

Fuzzy Cluster Analysis

Download Fuzzy Cluster Analysis PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 9780471988649
Total Pages : 308 pages
Book Rating : 4.9/5 (886 download)

DOWNLOAD NOW!


Book Synopsis Fuzzy Cluster Analysis by : Frank Höppner

Download or read book Fuzzy Cluster Analysis written by Frank Höppner and published by John Wiley & Sons. This book was released on 1999-07-09 with total page 308 pages. Available in PDF, EPUB and Kindle. Book excerpt: Dieser Band konzentriert sich auf Konzepte, Algorithmen und Anwendungen des Fuzzy Clustering. In sich geschlossen werden Techniken wie das Fuzzy-c-Mittel und die Gustafson-Kessel- und Gath- und Gava-Algorithmen behandelt, wobei vom Leser keine Vorkenntnisse auf dem Gebiet von Fuzzy-Systemen erwartet werden. Durch anschauliche Anwendungsbeispiele eignet sich das Buch als Einführung für Praktiker der Datenanalyse, der Bilderkennung und der angewandten Mathematik. (05/99)

Advances in Intelligent Data Analysis XI

Download Advances in Intelligent Data Analysis XI PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 364234156X
Total Pages : 438 pages
Book Rating : 4.6/5 (423 download)

DOWNLOAD NOW!


Book Synopsis Advances in Intelligent Data Analysis XI by : Jaakko Hollmen

Download or read book Advances in Intelligent Data Analysis XI written by Jaakko Hollmen and published by Springer. This book was released on 2012-10-20 with total page 438 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book constitutes the refereed proceedings of the 11th International Conference on Intelligent Data Analysis, IDA 2012, held in Helsinki, Finland, in October 2012. The 32 revised full papers presented together with 3 invited papers were carefully reviewed and selected from 88 submissions. All current aspects of intelligent data analysis are addressed, including intelligent support for modeling and analyzing data from complex, dynamical systems. The papers focus on novel applications of IDA techniques to, e.g., networked digital information systems; novel modes of data acquisition and the associated issues; robustness and scalability issues of intelligent data analysis techniques; and visualization and dissemination results.