Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Statistical Modelling In Biostatistics And Bioinformatics
Download Statistical Modelling In Biostatistics And Bioinformatics full books in PDF, epub, and Kindle. Read online Statistical Modelling In Biostatistics And Bioinformatics ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis Statistical Modelling in Biostatistics and Bioinformatics by : Gilbert MacKenzie
Download or read book Statistical Modelling in Biostatistics and Bioinformatics written by Gilbert MacKenzie and published by Springer Science & Business Media. This book was released on 2014-05-08 with total page 250 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents selected papers on statistical model development related mainly to the fields of Biostatistics and Bioinformatics. The coverage of the material falls squarely into the following categories: (a) Survival analysis and multivariate survival analysis, (b) Time series and longitudinal data analysis, (c) Statistical model development and (d) Applied statistical modelling. Innovations in statistical modelling are presented throughout each of the four areas, with some intriguing new ideas on hierarchical generalized non-linear models and on frailty models with structural dispersion, just to mention two examples. The contributors include distinguished international statisticians such as Philip Hougaard, John Hinde, Il Do Ha, Roger Payne and Alessandra Durio, among others, as well as promising newcomers. Some of the contributions have come from researchers working in the BIO-SI research programme on Biostatistics and Bioinformatics, centred on the Universities of Limerick and Galway in Ireland and funded by the Science Foundation Ireland under its Mathematics Initiative.
Book Synopsis Modern Statistics for Modern Biology by : SUSAN. HUBER HOLMES (WOLFGANG.)
Download or read book Modern Statistics for Modern Biology written by SUSAN. HUBER HOLMES (WOLFGANG.) and published by Cambridge University Press. This book was released on 2018 with total page 407 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis Statistical Methods in Bioinformatics by : Warren J. Ewens
Download or read book Statistical Methods in Bioinformatics written by Warren J. Ewens and published by Springer Science & Business Media. This book was released on 2005-09-30 with total page 616 pages. Available in PDF, EPUB and Kindle. Book excerpt: Advances in computers and biotechnology have had a profound impact on biomedical research, and as a result complex data sets can now be generated to address extremely complex biological questions. Correspondingly, advances in the statistical methods necessary to analyze such data are following closely behind the advances in data generation methods. The statistical methods required by bioinformatics present many new and difficult problems for the research community. This book provides an introduction to some of these new methods. The main biological topics treated include sequence analysis, BLAST, microarray analysis, gene finding, and the analysis of evolutionary processes. The main statistical techniques covered include hypothesis testing and estimation, Poisson processes, Markov models and Hidden Markov models, and multiple testing methods. The second edition features new chapters on microarray analysis and on statistical inference, including a discussion of ANOVA, and discussions of the statistical theory of motifs and methods based on the hypergeometric distribution. Much material has been clarified and reorganized. The book is written so as to appeal to biologists and computer scientists who wish to know more about the statistical methods of the field, as well as to trained statisticians who wish to become involved with bioinformatics. The earlier chapters introduce the concepts of probability and statistics at an elementary level, but with an emphasis on material relevant to later chapters and often not covered in standard introductory texts. Later chapters should be immediately accessible to the trained statistician. Sufficient mathematical background consists of introductory courses in calculus and linear algebra. The basic biological concepts that are used are explained, or can be understood from the context, and standard mathematical concepts are summarized in an Appendix. Problems are provided at the end of each chapter allowing the reader to develop aspects of the theory outlined in the main text. Warren J. Ewens holds the Christopher H. Brown Distinguished Professorship at the University of Pennsylvania. He is the author of two books, Population Genetics and Mathematical Population Genetics. He is a senior editor of Annals of Human Genetics and has served on the editorial boards of Theoretical Population Biology, GENETICS, Proceedings of the Royal Society B and SIAM Journal in Mathematical Biology. He is a fellow of the Royal Society and the Australian Academy of Science. Gregory R. Grant is a senior bioinformatics researcher in the University of Pennsylvania Computational Biology and Informatics Laboratory. He obtained his Ph.D. in number theory from the University of Maryland in 1995 and his Masters in Computer Science from the University of Pennsylvania in 1999. Comments on the first edition: "This book would be an ideal text for a postgraduate course...[and] is equally well suited to individual study.... I would recommend the book highly." (Biometrics) "Ewens and Grant have given us a very welcome introduction to what is behind those pretty [graphical user] interfaces." (Naturwissenschaften) "The authors do an excellent job of presenting the essence of the material without getting bogged down in mathematical details." (Journal American Statistical Association) "The authors have restructured classical material to a great extent and the new organization of the different topics is one of the outstanding services of the book." (Metrika)
Book Synopsis New Frontiers of Biostatistics and Bioinformatics by : Yichuan Zhao
Download or read book New Frontiers of Biostatistics and Bioinformatics written by Yichuan Zhao and published by Springer. This book was released on 2018-12-05 with total page 473 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is comprised of presentations delivered at the 5th Workshop on Biostatistics and Bioinformatics held in Atlanta on May 5-7, 2017. Featuring twenty-two selected papers from the workshop, this book showcases the most current advances in the field, presenting new methods, theories, and case applications at the frontiers of biostatistics, bioinformatics, and interdisciplinary areas. Biostatistics and bioinformatics have been playing a key role in statistics and other scientific research fields in recent years. The goal of the 5th Workshop on Biostatistics and Bioinformatics was to stimulate research, foster interaction among researchers in field, and offer opportunities for learning and facilitating research collaborations in the era of big data. The resulting volume offers timely insights for researchers, students, and industry practitioners.
Book Synopsis Advances in Statistical Bioinformatics by : Kim-Anh Do
Download or read book Advances in Statistical Bioinformatics written by Kim-Anh Do and published by Cambridge University Press. This book was released on 2013-06-10 with total page 499 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book describes the integration of high-throughput bioinformatics data from multiple platforms to inform our understanding of the functional consequences of genomic alterations.
Book Synopsis Information and Complexity in Statistical Modeling by : Jorma Rissanen
Download or read book Information and Complexity in Statistical Modeling written by Jorma Rissanen and published by Springer Science & Business Media. This book was released on 2007-12-15 with total page 145 pages. Available in PDF, EPUB and Kindle. Book excerpt: No statistical model is "true" or "false," "right" or "wrong"; the models just have varying performance, which can be assessed. The main theme in this book is to teach modeling based on the principle that the objective is to extract the information from data that can be learned with suggested classes of probability models. The intuitive and fundamental concepts of complexity, learnable information, and noise are formalized, which provides a firm information theoretic foundation for statistical modeling. Although the prerequisites include only basic probability calculus and statistics, a moderate level of mathematical proficiency would be beneficial.
Book Synopsis Statistical Modeling in Biomedical Research by : Yichuan Zhao
Download or read book Statistical Modeling in Biomedical Research written by Yichuan Zhao and published by Springer Nature. This book was released on 2020-03-19 with total page 495 pages. Available in PDF, EPUB and Kindle. Book excerpt: This edited collection discusses the emerging topics in statistical modeling for biomedical research. Leading experts in the frontiers of biostatistics and biomedical research discuss the statistical procedures, useful methods, and their novel applications in biostatistics research. Interdisciplinary in scope, the volume as a whole reflects the latest advances in statistical modeling in biomedical research, identifies impactful new directions, and seeks to drive the field forward. It also fosters the interaction of scholars in the arena, offering great opportunities to stimulate further collaborations. This book will appeal to industry data scientists and statisticians, researchers, and graduate students in biostatistics and biomedical science. It covers topics in: Next generation sequence data analysis Deep learning, precision medicine, and their applications Large scale data analysis and its applications Biomedical research and modeling Survival analysis with complex data structure and its applications.
Book Synopsis Information Criteria and Statistical Modeling by : Sadanori Konishi
Download or read book Information Criteria and Statistical Modeling written by Sadanori Konishi and published by Springer Science & Business Media. This book was released on 2008 with total page 282 pages. Available in PDF, EPUB and Kindle. Book excerpt: Statistical modeling is a critical tool in scientific research. This book provides comprehensive explanations of the concepts and philosophy of statistical modeling, together with a wide range of practical and numerical examples. The authors expect this work to be of great value not just to statisticians but also to researchers and practitioners in various fields of research such as information science, computer science, engineering, bioinformatics, economics, marketing and environmental science. It’s a crucial area of study, as statistical models are used to understand phenomena with uncertainty and to determine the structure of complex systems. They’re also used to control such systems, as well as to make reliable predictions in various natural and social science fields.
Book Synopsis Bioinformatics and Computational Biology Solutions Using R and Bioconductor by : Robert Gentleman
Download or read book Bioinformatics and Computational Biology Solutions Using R and Bioconductor written by Robert Gentleman and published by Springer Science & Business Media. This book was released on 2005-12-29 with total page 478 pages. Available in PDF, EPUB and Kindle. Book excerpt: Full four-color book. Some of the editors created the Bioconductor project and Robert Gentleman is one of the two originators of R. All methods are illustrated with publicly available data, and a major section of the book is devoted to fully worked case studies. Code underlying all of the computations that are shown is made available on a companion website, and readers can reproduce every number, figure, and table on their own computers.
Book Synopsis Statistical Modeling and Machine Learning for Molecular Biology by : Alan Moses
Download or read book Statistical Modeling and Machine Learning for Molecular Biology written by Alan Moses and published by CRC Press. This book was released on 2017-01-06 with total page 281 pages. Available in PDF, EPUB and Kindle. Book excerpt: • Assumes no background in statistics or computers • Covers most major types of molecular biological data • Covers the statistical and machine learning concepts of most practical utility (P-values, clustering, regression, regularization and classification) • Intended for graduate students beginning careers in molecular biology, systems biology, bioengineering and genetics
Book Synopsis Bayesian Modeling in Bioinformatics by : Dipak K. Dey
Download or read book Bayesian Modeling in Bioinformatics written by Dipak K. Dey and published by CRC Press. This book was released on 2010-09-03 with total page 466 pages. Available in PDF, EPUB and Kindle. Book excerpt: Bayesian Modeling in Bioinformatics discusses the development and application of Bayesian statistical methods for the analysis of high-throughput bioinformatics data arising from problems in molecular and structural biology and disease-related medical research, such as cancer. It presents a broad overview of statistical inference, clustering, and c
Book Synopsis Handbook of Statistical Bioinformatics by : Henry Horng-Shing Lu
Download or read book Handbook of Statistical Bioinformatics written by Henry Horng-Shing Lu and published by Springer Nature. This book was released on 2022-12-08 with total page 406 pages. Available in PDF, EPUB and Kindle. Book excerpt: Now in its second edition, this handbook collects authoritative contributions on modern methods and tools in statistical bioinformatics with a focus on the interface between computational statistics and cutting-edge developments in computational biology. The three parts of the book cover statistical methods for single-cell analysis, network analysis, and systems biology, with contributions by leading experts addressing key topics in probabilistic and statistical modeling and the analysis of massive data sets generated by modern biotechnology. This handbook will serve as a useful reference source for students, researchers and practitioners in statistics, computer science and biological and biomedical research, who are interested in the latest developments in computational statistics as applied to computational biology.
Book Synopsis Statistical Analysis of Network Data by : Eric D. Kolaczyk
Download or read book Statistical Analysis of Network Data written by Eric D. Kolaczyk and published by Springer Science & Business Media. This book was released on 2009-04-20 with total page 397 pages. Available in PDF, EPUB and Kindle. Book excerpt: In recent years there has been an explosion of network data – that is, measu- ments that are either of or from a system conceptualized as a network – from se- ingly all corners of science. The combination of an increasingly pervasive interest in scienti c analysis at a systems level and the ever-growing capabilities for hi- throughput data collection in various elds has fueled this trend. Researchers from biology and bioinformatics to physics, from computer science to the information sciences, and from economics to sociology are more and more engaged in the c- lection and statistical analysis of data from a network-centric perspective. Accordingly, the contributions to statistical methods and modeling in this area have come from a similarly broad spectrum of areas, often independently of each other. Many books already have been written addressing network data and network problems in speci c individual disciplines. However, there is at present no single book that provides a modern treatment of a core body of knowledge for statistical analysis of network data that cuts across the various disciplines and is organized rather according to a statistical taxonomy of tasks and techniques. This book seeks to ll that gap and, as such, it aims to contribute to a growing trend in recent years to facilitate the exchange of knowledge across the pre-existing boundaries between those disciplines that play a role in what is coming to be called ‘network science.
Book Synopsis Statistical Modeling for Biological Systems by : Anthony Almudevar
Download or read book Statistical Modeling for Biological Systems written by Anthony Almudevar and published by Springer. This book was released on 2021-03-12 with total page 354 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book commemorates the scientific contributions of distinguished statistician, Andrei Yakovlev. It reflects upon Dr. Yakovlev’s many research interests including stochastic modeling and the analysis of micro-array data, and throughout the book it emphasizes applications of the theory in biology, medicine and public health. The contributions to this volume are divided into two parts. Part A consists of original research articles, which can be roughly grouped into four thematic areas: (i) branching processes, especially as models for cell kinetics, (ii) multiple testing issues as they arise in the analysis of biologic data, (iii) applications of mathematical models and of new inferential techniques in epidemiology, and (iv) contributions to statistical methodology, with an emphasis on the modeling and analysis of survival time data. Part B consists of methodological research reported as a short communication, ending with some personal reflections on research fields associated with Andrei and on his approach to science. The Appendix contains an abbreviated vitae and a list of Andrei’s publications, complete as far as we know. The contributions in this book are written by Dr. Yakovlev’s collaborators and notable statisticians including former presidents of the Institute of Mathematical Statistics and of the Statistics Section of the AAAS. Dr. Yakovlev’s research appeared in four books and almost 200 scientific papers, in mathematics, statistics, biomathematics and biology journals. Ultimately this book offers a tribute to Dr. Yakovlev’s work and recognizes the legacy of his contributions in the biostatistics community.
Book Synopsis Probabilistic Modeling in Bioinformatics and Medical Informatics by : Dirk Husmeier
Download or read book Probabilistic Modeling in Bioinformatics and Medical Informatics written by Dirk Husmeier and published by Springer Science & Business Media. This book was released on 2006-05-06 with total page 511 pages. Available in PDF, EPUB and Kindle. Book excerpt: Probabilistic Modelling in Bioinformatics and Medical Informatics has been written for researchers and students in statistics, machine learning, and the biological sciences. The first part of this book provides a self-contained introduction to the methodology of Bayesian networks. The following parts demonstrate how these methods are applied in bioinformatics and medical informatics. All three fields - the methodology of probabilistic modeling, bioinformatics, and medical informatics - are evolving very quickly. The text should therefore be seen as an introduction, offering both elementary tutorials as well as more advanced applications and case studies.
Book Synopsis Statistical Bioinformatics by : Jae K. Lee
Download or read book Statistical Bioinformatics written by Jae K. Lee and published by John Wiley & Sons. This book was released on 2011-09-20 with total page 337 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides an essential understanding of statistical concepts necessary for the analysis of genomic and proteomic data using computational techniques. The author presents both basic and advanced topics, focusing on those that are relevant to the computational analysis of large data sets in biology. Chapters begin with a description of a statistical concept and a current example from biomedical research, followed by more detailed presentation, discussion of limitations, and problems. The book starts with an introduction to probability and statistics for genome-wide data, and moves into topics such as clustering, classification, multi-dimensional visualization, experimental design, statistical resampling, and statistical network analysis. Clearly explains the use of bioinformatics tools in life sciences research without requiring an advanced background in math/statistics Enables biomedical and life sciences researchers to successfully evaluate the validity of their results and make inferences Enables statistical and quantitative researchers to rapidly learn novel statistical concepts and techniques appropriate for large biological data analysis Carefully revisits frequently used statistical approaches and highlights their limitations in large biological data analysis Offers programming examples and datasets Includes chapter problem sets, a glossary, a list of statistical notations, and appendices with references to background mathematical and technical material Features supplementary materials, including datasets, links, and a statistical package available online Statistical Bioinformatics is an ideal textbook for students in medicine, life sciences, and bioengineering, aimed at researchers who utilize computational tools for the analysis of genomic, proteomic, and many other emerging high-throughput molecular data. It may also serve as a rapid introduction to the bioinformatics science for statistical and computational students and audiences who have not experienced such analysis tasks before.
Book Synopsis Regression Modeling Strategies by : Frank E. Harrell
Download or read book Regression Modeling Strategies written by Frank E. Harrell and published by Springer Science & Business Media. This book was released on 2013-03-09 with total page 583 pages. Available in PDF, EPUB and Kindle. Book excerpt: Many texts are excellent sources of knowledge about individual statistical tools, but the art of data analysis is about choosing and using multiple tools. Instead of presenting isolated techniques, this text emphasizes problem solving strategies that address the many issues arising when developing multivariable models using real data and not standard textbook examples. It includes imputation methods for dealing with missing data effectively, methods for dealing with nonlinear relationships and for making the estimation of transformations a formal part of the modeling process, methods for dealing with "too many variables to analyze and not enough observations," and powerful model validation techniques based on the bootstrap. This text realistically deals with model uncertainty and its effects on inference to achieve "safe data mining".