Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Statistical Inference For Spatial Processes
Download Statistical Inference For Spatial Processes full books in PDF, epub, and Kindle. Read online Statistical Inference For Spatial Processes ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis Statistical Inference for Spatial Processes by : B. D. Ripley
Download or read book Statistical Inference for Spatial Processes written by B. D. Ripley and published by Cambridge University Press. This book was released on 1988 with total page 162 pages. Available in PDF, EPUB and Kindle. Book excerpt: The study of spatial processes and their applications is an important topic in statistics and finds wide application particularly in computer vision and image processing. This book is devoted to statistical inference in spatial statistics and is intended for specialists needing an introduction to the subject and to its applications. One of the themes of the book is the demonstration of how these techniques give new insights into classical procedures (including new examples in likelihood theory) and newer statistical paradigms such as Monte-Carlo inference and pseudo-likelihood. Professor Ripley also stresses the importance of edge effects and of lack of a unique asymptotic setting in spatial problems. Throughout, the author discusses the foundational issues posed and the difficulties, both computational and philosophical, which arise. The final chapters consider image restoration and segmentation methods and the averaging and summarising of images. Thus, the book will find wide appeal to researchers in computer vision, image processing, and those applying microscopy in biology, geology and materials science, as well as to statisticians interested in the foundations of their discipline.
Book Synopsis Statistical Inference and Simulation for Spatial Point Processes by : Jesper Moller
Download or read book Statistical Inference and Simulation for Spatial Point Processes written by Jesper Moller and published by CRC Press. This book was released on 2003-09-25 with total page 320 pages. Available in PDF, EPUB and Kindle. Book excerpt: Spatial point processes play a fundamental role in spatial statistics and today they are an active area of research with many new applications. Although other published works address different aspects of spatial point processes, most of the classical literature deals only with nonparametric methods, and a thorough treatment of the theory and applications of simulation-based inference is difficult to find. Written by researchers at the top of the field, this book collects and unifies recent theoretical advances and examples of applications. The authors examine Markov chain Monte Carlo algorithms and explore one of the most important recent developments in MCMC: perfect simulation procedures.
Book Synopsis Statistical Inference for Spatial Poisson Processes by : Yu A. Kutoyants
Download or read book Statistical Inference for Spatial Poisson Processes written by Yu A. Kutoyants and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 282 pages. Available in PDF, EPUB and Kindle. Book excerpt: This work is devoted to several problems of parametric (mainly) and nonparametric estimation through the observation of Poisson processes defined on general spaces. Poisson processes are quite popular in applied research and therefore they attract the attention of many statisticians. There are a lot of good books on point processes and many of them contain chapters devoted to statistical inference for general and partic ular models of processes. There are even chapters on statistical estimation problems for inhomogeneous Poisson processes in asymptotic statements. Nevertheless it seems that the asymptotic theory of estimation for nonlinear models of Poisson processes needs some development. Here nonlinear means the models of inhomogeneous Pois son processes with intensity function nonlinearly depending on unknown parameters. In such situations the estimators usually cannot be written in exact form and are given as solutions of some equations. However the models can be quite fruitful in en gineering problems and the existing computing algorithms are sufficiently powerful to calculate these estimators. Therefore the properties of estimators can be interesting too.
Book Synopsis Theory of Spatial Statistics by : M.N.M. van Lieshout
Download or read book Theory of Spatial Statistics written by M.N.M. van Lieshout and published by CRC Press. This book was released on 2019-03-19 with total page 221 pages. Available in PDF, EPUB and Kindle. Book excerpt: Theory of Spatial Statistics: A Concise Introduction presents the most important models used in spatial statistics, including random fields and point processes, from a rigorous mathematical point of view and shows how to carry out statistical inference. It contains full proofs, real-life examples and theoretical exercises. Solutions to the latter are available in an appendix. Assuming maturity in probability and statistics, these concise lecture notes are self-contained and cover enough material for a semester course. They may also serve as a reference book for researchers. Features * Presents the mathematical foundations of spatial statistics. * Contains worked examples from mining, disease mapping, forestry, soil and environmental science, and criminology. * Gives pointers to the literature to facilitate further study. * Provides example code in R to encourage the student to experiment. * Offers exercises and their solutions to test and deepen understanding. The book is suitable for postgraduate and advanced undergraduate students in mathematics and statistics.
Book Synopsis Statistics for Spatial Data by : Noel Cressie
Download or read book Statistics for Spatial Data written by Noel Cressie and published by John Wiley & Sons. This book was released on 2015-03-18 with total page 931 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Wiley Classics Library consists of selected books that have been made more accessible to consumers in an effort to increase global appeal and general circulation. With these new unabridged softcover volumes, Wiley hopes to extend the lives of these works by making them available to future generations of statisticians, mathematicians, and scientists. Spatial statistics — analyzing spatial data through statistical models — has proven exceptionally versatile, encompassing problems ranging from the microscopic to the astronomic. However, for the scientist and engineer faced only with scattered and uneven treatments of the subject in the scientific literature, learning how to make practical use of spatial statistics in day-to-day analytical work is very difficult. Designed exclusively for scientists eager to tap into the enormous potential of this analytical tool and upgrade their range of technical skills, Statistics for Spatial Data is a comprehensive, single-source guide to both the theory and applied aspects of spatial statistical methods. The hard-cover edition was hailed by Mathematical Reviews as an "excellent book which will become a basic reference." This paper-back edition of the 1993 edition, is designed to meet the many technological challenges facing the scientist and engineer. Concentrating on the three areas of geostatistical data, lattice data, and point patterns, the book sheds light on the link between data and model, revealing how design, inference, and diagnostics are an outgrowth of that link. It then explores new methods to reveal just how spatial statistical models can be used to solve important problems in a host of areas in science and engineering. Discussion includes: Exploratory spatial data analysis Spectral theory for stationary processes Spatial scale Simulation methods for spatial processes Spatial bootstrapping Statistical image analysis and remote sensing Computational aspects of model fitting Application of models to disease mapping Designed to accommodate the practical needs of the professional, it features a unified and common notation for its subject as well as many detailed examples woven into the text, numerous illustrations (including graphs that illuminate the theory discussed) and over 1,000 references. Fully balancing theory with applications, Statistics for Spatial Data, Revised Edition is an exceptionally clear guide on making optimal use of one of the ascendant analytical tools of the decade, one that has begun to capture the imagination of professionals in biology, earth science, civil, electrical, and agricultural engineering, geography, epidemiology, and ecology.
Book Synopsis Handbook of Spatial Statistics by : Alan E. Gelfand
Download or read book Handbook of Spatial Statistics written by Alan E. Gelfand and published by CRC Press. This book was released on 2010-03-19 with total page 622 pages. Available in PDF, EPUB and Kindle. Book excerpt: Assembling a collection of very prominent researchers in the field, the Handbook of Spatial Statistics presents a comprehensive treatment of both classical and state-of-the-art aspects of this maturing area. It takes a unified, integrated approach to the material, providing cross-references among chapters.The handbook begins with a historical intro
Book Synopsis Spatial Point Patterns by : Adrian Baddeley
Download or read book Spatial Point Patterns written by Adrian Baddeley and published by CRC Press. This book was released on 2015-11-11 with total page 830 pages. Available in PDF, EPUB and Kindle. Book excerpt: Modern Statistical Methodology and Software for Analyzing Spatial Point PatternsSpatial Point Patterns: Methodology and Applications with R shows scientific researchers and applied statisticians from a wide range of fields how to analyze their spatial point pattern data. Making the techniques accessible to non-mathematicians, the authors draw on th
Book Synopsis Spatial Statistics and Modeling by : Carlo Gaetan
Download or read book Spatial Statistics and Modeling written by Carlo Gaetan and published by Springer Science & Business Media. This book was released on 2009-11-10 with total page 308 pages. Available in PDF, EPUB and Kindle. Book excerpt: Spatial statistics are useful in subjects as diverse as climatology, ecology, economics, environmental and earth sciences, epidemiology, image analysis and more. This book covers the best-known spatial models for three types of spatial data: geostatistical data (stationarity, intrinsic models, variograms, spatial regression and space-time models), areal data (Gibbs-Markov fields and spatial auto-regression) and point pattern data (Poisson, Cox, Gibbs and Markov point processes). The level is relatively advanced, and the presentation concise but complete. The most important statistical methods and their asymptotic properties are described, including estimation in geostatistics, autocorrelation and second-order statistics, maximum likelihood methods, approximate inference using the pseudo-likelihood or Monte-Carlo simulations, statistics for point processes and Bayesian hierarchical models. A chapter is devoted to Markov Chain Monte Carlo simulation (Gibbs sampler, Metropolis-Hastings algorithms and exact simulation). A large number of real examples are studied with R, and each chapter ends with a set of theoretical and applied exercises. While a foundation in probability and mathematical statistics is assumed, three appendices introduce some necessary background. The book is accessible to senior undergraduate students with a solid math background and Ph.D. students in statistics. Furthermore, experienced statisticians and researchers in the above-mentioned fields will find the book valuable as a mathematically sound reference. This book is the English translation of Modélisation et Statistique Spatiales published by Springer in the series Mathématiques & Applications, a series established by Société de Mathématiques Appliquées et Industrielles (SMAI).
Book Synopsis Statistical Analysis and Modelling of Spatial Point Patterns by : Dr. Janine Illian
Download or read book Statistical Analysis and Modelling of Spatial Point Patterns written by Dr. Janine Illian and published by John Wiley & Sons. This book was released on 2008-04-15 with total page 560 pages. Available in PDF, EPUB and Kindle. Book excerpt: Spatial point processes are mathematical models used to describe and analyse the geometrical structure of patterns formed by objects that are irregularly or randomly distributed in one-, two- or three-dimensional space. Examples include locations of trees in a forest, blood particles on a glass plate, galaxies in the universe, and particle centres in samples of material. Numerous aspects of the nature of a specific spatial point pattern may be described using the appropriate statistical methods. Statistical Analysis and Modelling of Spatial Point Patterns provides a practical guide to the use of these specialised methods. The application-oriented approach helps demonstrate the benefits of this increasingly popular branch of statistics to a broad audience. The book: Provides an introduction to spatial point patterns for researchers across numerous areas of application Adopts an extremely accessible style, allowing the non-statistician complete understanding Describes the process of extracting knowledge from the data, emphasising the marked point process Demonstrates the analysis of complex datasets, using applied examples from areas including biology, forestry, and materials science Features a supplementary website containing example datasets. Statistical Analysis and Modelling of Spatial Point Patterns is ideally suited for researchers in the many areas of application, including environmental statistics, ecology, physics, materials science, geostatistics, and biology. It is also suitable for students of statistics, mathematics, computer science, biology and geoinformatics.
Book Synopsis Statistics for Spatio-Temporal Data by : Noel Cressie
Download or read book Statistics for Spatio-Temporal Data written by Noel Cressie and published by John Wiley & Sons. This book was released on 2015-11-02 with total page 612 pages. Available in PDF, EPUB and Kindle. Book excerpt: Winner of the 2013 DeGroot Prize. A state-of-the-art presentation of spatio-temporal processes, bridging classic ideas with modern hierarchical statistical modeling concepts and the latest computational methods Noel Cressie and Christopher K. Wikle, are also winners of the 2011 PROSE Award in the Mathematics category, for the book “Statistics for Spatio-Temporal Data” (2011), published by John Wiley and Sons. (The PROSE awards, for Professional and Scholarly Excellence, are given by the Association of American Publishers, the national trade association of the US book publishing industry.) Statistics for Spatio-Temporal Data has now been reprinted with small corrections to the text and the bibliography. The overall content and pagination of the new printing remains the same; the difference comes in the form of corrections to typographical errors, editing of incomplete and missing references, and some updated spatio-temporal interpretations. From understanding environmental processes and climate trends to developing new technologies for mapping public-health data and the spread of invasive-species, there is a high demand for statistical analyses of data that take spatial, temporal, and spatio-temporal information into account. Statistics for Spatio-Temporal Data presents a systematic approach to key quantitative techniques that incorporate the latest advances in statistical computing as well as hierarchical, particularly Bayesian, statistical modeling, with an emphasis on dynamical spatio-temporal models. Cressie and Wikle supply a unique presentation that incorporates ideas from the areas of time series and spatial statistics as well as stochastic processes. Beginning with separate treatments of temporal data and spatial data, the book combines these concepts to discuss spatio-temporal statistical methods for understanding complex processes. Topics of coverage include: Exploratory methods for spatio-temporal data, including visualization, spectral analysis, empirical orthogonal function analysis, and LISAs Spatio-temporal covariance functions, spatio-temporal kriging, and time series of spatial processes Development of hierarchical dynamical spatio-temporal models (DSTMs), with discussion of linear and nonlinear DSTMs and computational algorithms for their implementation Quantifying and exploring spatio-temporal variability in scientific applications, including case studies based on real-world environmental data Throughout the book, interesting applications demonstrate the relevance of the presented concepts. Vivid, full-color graphics emphasize the visual nature of the topic, and a related FTP site contains supplementary material. Statistics for Spatio-Temporal Data is an excellent book for a graduate-level course on spatio-temporal statistics. It is also a valuable reference for researchers and practitioners in the fields of applied mathematics, engineering, and the environmental and health sciences.
Book Synopsis Spatial Econometrics: Methods and Models by : L. Anselin
Download or read book Spatial Econometrics: Methods and Models written by L. Anselin and published by Springer Science & Business Media. This book was released on 2013-03-09 with total page 295 pages. Available in PDF, EPUB and Kindle. Book excerpt: Spatial econometrics deals with spatial dependence and spatial heterogeneity, critical aspects of the data used by regional scientists. These characteristics may cause standard econometric techniques to become inappropriate. In this book, I combine several recent research results to construct a comprehensive approach to the incorporation of spatial effects in econometrics. My primary focus is to demonstrate how these spatial effects can be considered as special cases of general frameworks in standard econometrics, and to outline how they necessitate a separate set of methods and techniques, encompassed within the field of spatial econometrics. My viewpoint differs from that taken in the discussion of spatial autocorrelation in spatial statistics - e.g., most recently by Cliff and Ord (1981) and Upton and Fingleton (1985) - in that I am mostly concerned with the relevance of spatial effects on model specification, estimation and other inference, in what I caIl a model-driven approach, as opposed to a data-driven approach in spatial statistics. I attempt to combine a rigorous econometric perspective with a comprehensive treatment of methodological issues in spatial analysis.
Book Synopsis Applied Spatial Statistics for Public Health Data by : Lance A. Waller
Download or read book Applied Spatial Statistics for Public Health Data written by Lance A. Waller and published by John Wiley & Sons. This book was released on 2004-07-29 with total page 522 pages. Available in PDF, EPUB and Kindle. Book excerpt: While mapped data provide a common ground for discussions between the public, the media, regulatory agencies, and public health researchers, the analysis of spatially referenced data has experienced a phenomenal growth over the last two decades, thanks in part to the development of geographical information systems (GISs). This is the first thorough overview to integrate spatial statistics with data management and the display capabilities of GIS. It describes methods for assessing the likelihood of observed patterns and quantifying the link between exposures and outcomes in spatially correlated data. This introductory text is designed to serve as both an introduction for the novice and a reference for practitioners in the field Requires only minimal background in public health and only some knowledge of statistics through multiple regression Touches upon some advanced topics, such as random effects, hierarchical models and spatial point processes, but does not require prior exposure Includes lavish use of figures/illustrations throughout the volume as well as analyses of several data sets (in the form of "data breaks") Exercises based on data analyses reinforce concepts
Book Synopsis Statistical Methods in Spatial Epidemiology by : Andrew B. Lawson
Download or read book Statistical Methods in Spatial Epidemiology written by Andrew B. Lawson and published by John Wiley & Sons. This book was released on 2013-07-08 with total page 302 pages. Available in PDF, EPUB and Kindle. Book excerpt: Spatial epidemiology is the description and analysis of the geographical distribution of disease. It is more important now than ever, with modern threats such as bio-terrorism making such analysis even more complex. This second edition of Statistical Methods in Spatial Epidemiology is updated and expanded to offer a complete coverage of the analysis and application of spatial statistical methods. The book is divided into two main sections: Part 1 introduces basic definitions and terminology, along with map construction and some basic models. This is expanded upon in Part II by applying this knowledge to the fundamental problems within spatial epidemiology, such as disease mapping, ecological analysis, disease clustering, bio-terrorism, space-time analysis, surveillance and infectious disease modelling. Provides a comprehensive overview of the main statistical methods used in spatial epidemiology. Updated to include a new emphasis on bio-terrorism and disease surveillance. Emphasizes the importance of space-time modelling and outlines the practical application of the method. Discusses the wide range of software available for analyzing spatial data, including WinBUGS, SaTScan and R, and features an accompanying website hosting related software. Contains numerous data sets, each representing a different approach to the analysis, and provides an insight into various modelling techniques. This text is primarily aimed at medical statisticians, researchers and practitioners from public health and epidemiology. It is also suitable for postgraduate students of statistics and epidemiology, as well professionals working in government agencies.
Download or read book Scan Statistics written by Joseph Glaz and published by Springer Science & Business Media. This book was released on 2013-03-09 with total page 380 pages. Available in PDF, EPUB and Kindle. Book excerpt: In many statistical applications, scientists have to analyze the occurrence of observed clusters of events in time or space. Scientists are especially interested in determining whether an observed cluster of events has occurred by chance if it is assumed that the events are distributed independently and uniformly over time or space. Scan statistics have relevant applications in many areas of science and technology including geology, geography, medicine, minefield detection, molecular biology, photography, quality control and reliability theory and radio-optics.
Book Synopsis Bayesian Inference for Stochastic Processes by : Lyle D. Broemeling
Download or read book Bayesian Inference for Stochastic Processes written by Lyle D. Broemeling and published by CRC Press. This book was released on 2017-12-12 with total page 409 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is the first book designed to introduce Bayesian inference procedures for stochastic processes. There are clear advantages to the Bayesian approach (including the optimal use of prior information). Initially, the book begins with a brief review of Bayesian inference and uses many examples relevant to the analysis of stochastic processes, including the four major types, namely those with discrete time and discrete state space and continuous time and continuous state space. The elements necessary to understanding stochastic processes are then introduced, followed by chapters devoted to the Bayesian analysis of such processes. It is important that a chapter devoted to the fundamental concepts in stochastic processes is included. Bayesian inference (estimation, testing hypotheses, and prediction) for discrete time Markov chains, for Markov jump processes, for normal processes (e.g. Brownian motion and the Ornstein–Uhlenbeck process), for traditional time series, and, lastly, for point and spatial processes are described in detail. Heavy emphasis is placed on many examples taken from biology and other scientific disciplines. In order analyses of stochastic processes, it will use R and WinBUGS. Features: Uses the Bayesian approach to make statistical Inferences about stochastic processes The R package is used to simulate realizations from different types of processes Based on realizations from stochastic processes, the WinBUGS package will provide the Bayesian analysis (estimation, testing hypotheses, and prediction) for the unknown parameters of stochastic processes To illustrate the Bayesian inference, many examples taken from biology, economics, and astronomy will reinforce the basic concepts of the subject A practical approach is implemented by considering realistic examples of interest to the scientific community WinBUGS and R code are provided in the text, allowing the reader to easily verify the results of the inferential procedures found in the many examples of the book Readers with a good background in two areas, probability theory and statistical inference, should be able to master the essential ideas of this book.
Book Synopsis Applied Spatial Statistics and Econometrics by : Katarzyna Kopczewska
Download or read book Applied Spatial Statistics and Econometrics written by Katarzyna Kopczewska and published by Routledge. This book was released on 2020-11-25 with total page 725 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook is a comprehensive introduction to applied spatial data analysis using R. Each chapter walks the reader through a different method, explaining how to interpret the results and what conclusions can be drawn. The author team showcases key topics, including unsupervised learning, causal inference, spatial weight matrices, spatial econometrics, heterogeneity and bootstrapping. It is accompanied by a suite of data and R code on Github to help readers practise techniques via replication and exercises. This text will be a valuable resource for advanced students of econometrics, spatial planning and regional science. It will also be suitable for researchers and data scientists working with spatial data.
Book Synopsis Advanced Spatial Modeling with Stochastic Partial Differential Equations Using R and INLA by : Elias T. Krainski
Download or read book Advanced Spatial Modeling with Stochastic Partial Differential Equations Using R and INLA written by Elias T. Krainski and published by CRC Press. This book was released on 2018-12-07 with total page 284 pages. Available in PDF, EPUB and Kindle. Book excerpt: Modeling spatial and spatio-temporal continuous processes is an important and challenging problem in spatial statistics. Advanced Spatial Modeling with Stochastic Partial Differential Equations Using R and INLA describes in detail the stochastic partial differential equations (SPDE) approach for modeling continuous spatial processes with a Matérn covariance, which has been implemented using the integrated nested Laplace approximation (INLA) in the R-INLA package. Key concepts about modeling spatial processes and the SPDE approach are explained with examples using simulated data and real applications. This book has been authored by leading experts in spatial statistics, including the main developers of the INLA and SPDE methodologies and the R-INLA package. It also includes a wide range of applications: * Spatial and spatio-temporal models for continuous outcomes * Analysis of spatial and spatio-temporal point patterns * Coregionalization spatial and spatio-temporal models * Measurement error spatial models * Modeling preferential sampling * Spatial and spatio-temporal models with physical barriers * Survival analysis with spatial effects * Dynamic space-time regression * Spatial and spatio-temporal models for extremes * Hurdle models with spatial effects * Penalized Complexity priors for spatial models All the examples in the book are fully reproducible. Further information about this book, as well as the R code and datasets used, is available from the book website at http://www.r-inla.org/spde-book. The tools described in this book will be useful to researchers in many fields such as biostatistics, spatial statistics, environmental sciences, epidemiology, ecology and others. Graduate and Ph.D. students will also find this book and associated files a valuable resource to learn INLA and the SPDE approach for spatial modeling.